
1.主成分分析的具体方法
主成分分析是一类常用的针对连续变量的降维方法,选取能够最大化解释数据变异的成分,将数据从高维降到低维,同时 保证各个维度之间正交。 对变量的协方差矩阵或相关系数矩阵求取特征值和特征向量,经证明,对应最大特征值的特征向量,其方向正是协方差矩 阵变异最大的方向。依次类推,第二大特征值对应的特征向量,是与第一个特征向量正交且能最大程度解释数据剩余变异 的方向,而每个特征值则能够衡量各方向上变异的程度。因此,进行主成分分析时,选取最大的几个特征值对应的特征向 量,并将数据映射在这几个特征向量组成的参考系中,达到降维的目的(选择的特征向量数量低于原始数据的维数)。
1.主成分分析算法解析
主成分分析算法认为,数据的信息是包含在其方差当中的,如果一个随机变量的方差很小,说明其不确定性较低,或者说即便我们没有获 得这个变量的抽样值,也几乎可以用一个确定的值(例如其期望值)来代替它,因此引入它只能消除很少的不确定性,即该变量包含的信 息较少。相反,一个方差很大的变量,如果能够获得它的抽样值,则可以帮助我们消除很大一部分不确定性,因此它包含的信息较多。 从主成分分析的观点出发,我们就知道下图中投影到哪个轴更加合适了,显然将原始坐标轴旋转到左图当中的U1位置更好,因为数据在 这个方向上的变异(方差)更大,而样本在右图的U1方向显然变异更小(图中阴影用于示意离散程度,并不代表方差大小)。
我们的目标是优化上式,求满足该函数最大化的 u,可以使用拉格朗日乘数法,即求满足下式最大的 u:
我们的目标是优化上式,求满足该函数最大化的 u,可以使用拉格朗日乘数法,即求满足下式最大的 u:
在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰 到好处。相关系数矩阵就是随机变量标准化后的协方差矩阵。通过随机变量的标准化,相关系数矩阵剥离了单个指标的 方差,仅保留指标间的相关性,用相关系数矩阵计算主成分,其优势效应仅体现在相关性大、相关指标数多的一类指标上。
2.主成分法的应用
大致分为三个方面:
(1)对数据做综合打分
(2)降维以便对数据进行描述
(3)为聚类或回归等分析提供变量压缩 在应用时要能够判断主成分法的适用性,能够根据需求选取合适的主成分数量。
1.主成分分析计算在选择相关系数计算法时,确定主成分个数的大致原则包括( )?
A.特征根值大于1
B. 特征根值大于0.5
答案:AC 解析:主成分分析主要考核得到软件的计算结果后如何选择主成分个数,由于主成分一般不具有 明确的意义,因此不考核主成分的解释,这会放在因子分析考核。该题是一个很标准的题目,答 案可以从任何一本教科书上找到。请注意题干中的“大致原则”,说明该原则在不同的运用场合 下选择标准会略有改变
2.主成分分析计算分为根据相关系数和协方差矩阵两种方式,以下哪种情况适合用相关系数计算( )?
A.变量的量纲不同
B. 变量的方差不同
C. 变量的标准差不同
D. 变量的均值不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15