京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上海57期数据分析就业班学员
姓名:谭同学
毕业院校:湖南大学
专业:软件工程
入职信息:上海某汽车公司,数据分析师,薪资保密,上海
各位同学大家好,很荣幸接到李智老师的邀请,分享一些个人的收获给大家。以下是本人面试完,到最终拿到期望offer后的一些心得体会,希望可以给大家提供一些帮助!
根据本人的面试经验,本文主要做些课堂补充。
数据岗位大体分为两类:1业务数据分析;2数据建模
1、 业务数据分析技能:Tableau+数据思维
数据思维:漏斗、留存、指标体系都是最为基本的,想要高薪需要具体业务的分析和推进思路,这方面我至今不到火候,就不班门弄釜了
2、 数据建模
个人把模型方面分为三部分
2.1第一部分:监督算法模型主力:回归模型+决策树+集成算法模型
金融岗爱问
2.1.1回归模型
损失函数L1,L2及其区别、逻辑回归公式推导
2.1.2集成算法模型(风投爱问)
随机森林、GBDT、XGB,特点+意义
2.2第二部分:监督补充sank(svm+ann+nb+knn)
SVM公式推导
2.3第三部分:非监督算法模型:关联+聚类
2.3.1关联
apriori可以拓展到推荐模型,结合协同过滤知识点一并交流(市场对推荐模型有偏好,问得多)
2.3.2聚类
kmeans的算法步骤:迭代地确定簇心,调整簇数据,直至簇心稳定
kmeans分箱是非监督分箱的一种
3、特征工程
处理缺失、异常值、共线性、数据不平衡性、编码、归一化、分箱、降维。。。。
缺失值:83法,小于30%填补+大于80%考虑删除+之间可独立成一项
异常值:盖帽法
不平衡性:过采样+欠采样(各自的处理方案最好心里有数,可以适当做一定的拓展阅读)
归一化:提高模型收敛速度和精度
分箱:分为监督分箱+非监督分箱(分别有哪些,心里要有数)
降维:分为线性降维+非线性降维(分别有哪些,心里要有数)
按上述展开方案,特征工程这块就能聊很久,可使简历上的项目生动形象
4、相关问题
这些算是我的直接面经吧,答案都在课堂+自我拓展里,准备不到位免不了到场卡壳
4.1特征工程耗时70%,你们都做了什么?
4.2写一下逻辑回归的推导公式
4.3写一下SVM的推导公式
4.4逻辑回归交叉熵公式?
4.5决策树熵增益公式?GINI公式?
4.6评分卡
4.6.1为什么要对原始数据进行卡方分箱?不可以直接使用原始数据吗?
4.6.2降维的方法有哪些?你知道PCA的原理吗?
4.7写一下apriori支持度、置信度、提升度公式?你还知道其他指标吗?
4.8bagging、boosting的区别?
最后,非常感谢CDA的这个学习平台,学习期间收获颇多,同时也感谢同学和各位老师们提供的帮助,希望CDA越来越好,可以培育出更多的优秀分析师!!!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22