
上海57期数据分析就业班学员
姓名:谭同学
毕业院校:湖南大学
专业:软件工程
入职信息:上海某汽车公司,数据分析师,薪资保密,上海
各位同学大家好,很荣幸接到李智老师的邀请,分享一些个人的收获给大家。以下是本人面试完,到最终拿到期望offer后的一些心得体会,希望可以给大家提供一些帮助!
根据本人的面试经验,本文主要做些课堂补充。
数据岗位大体分为两类:1业务数据分析;2数据建模
1、 业务数据分析技能:Tableau+数据思维
数据思维:漏斗、留存、指标体系都是最为基本的,想要高薪需要具体业务的分析和推进思路,这方面我至今不到火候,就不班门弄釜了
2、 数据建模
个人把模型方面分为三部分
2.1第一部分:监督算法模型主力:回归模型+决策树+集成算法模型
金融岗爱问
2.1.1回归模型
损失函数L1,L2及其区别、逻辑回归公式推导
2.1.2集成算法模型(风投爱问)
随机森林、GBDT、XGB,特点+意义
2.2第二部分:监督补充sank(svm+ann+nb+knn)
SVM公式推导
2.3第三部分:非监督算法模型:关联+聚类
2.3.1关联
apriori可以拓展到推荐模型,结合协同过滤知识点一并交流(市场对推荐模型有偏好,问得多)
2.3.2聚类
kmeans的算法步骤:迭代地确定簇心,调整簇数据,直至簇心稳定
kmeans分箱是非监督分箱的一种
3、特征工程
处理缺失、异常值、共线性、数据不平衡性、编码、归一化、分箱、降维。。。。
缺失值:83法,小于30%填补+大于80%考虑删除+之间可独立成一项
异常值:盖帽法
不平衡性:过采样+欠采样(各自的处理方案最好心里有数,可以适当做一定的拓展阅读)
归一化:提高模型收敛速度和精度
分箱:分为监督分箱+非监督分箱(分别有哪些,心里要有数)
降维:分为线性降维+非线性降维(分别有哪些,心里要有数)
按上述展开方案,特征工程这块就能聊很久,可使简历上的项目生动形象
4、相关问题
这些算是我的直接面经吧,答案都在课堂+自我拓展里,准备不到位免不了到场卡壳
4.1特征工程耗时70%,你们都做了什么?
4.2写一下逻辑回归的推导公式
4.3写一下SVM的推导公式
4.4逻辑回归交叉熵公式?
4.5决策树熵增益公式?GINI公式?
4.6评分卡
4.6.1为什么要对原始数据进行卡方分箱?不可以直接使用原始数据吗?
4.6.2降维的方法有哪些?你知道PCA的原理吗?
4.7写一下apriori支持度、置信度、提升度公式?你还知道其他指标吗?
4.8bagging、boosting的区别?
最后,非常感谢CDA的这个学习平台,学习期间收获颇多,同时也感谢同学和各位老师们提供的帮助,希望CDA越来越好,可以培育出更多的优秀分析师!!!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08