京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习工作职位需要的7项技能-数据分析师
机器学习经常与人工智能紧密相连,在不考虑显式编程的情况下,机器学习可以使计算机具备完成特定任务的能力,例如识别,诊断,规划,机器人控制和预测等。它往往聚焦于算法创新,即在面对新数据时,其自身能够发生演化。
在某种程度上,机器学习与数据挖掘很相似。它们都是通过数据来获取模式。然而,与人类可理解的数据提取方式不同—通常是按照数据挖掘应用的方式——机器学习主要是使用数据去提升程序本身的理解能力。机器学习程序能够在数据中检测出相关模式并相应的进行程序行为的调整。
现在,你是否准备去了解一些获得机器学习工作必备的技术了呢?一个优秀的求 职者应该对以下各方面知识都有很深的理解:算法和数学应用,问题解决能力和分析 技巧,概率统计和诸如 Python/C++/R/Java 等编程语言。此外,机器学习还需要求职 者具有与生俱来的好奇心,因此,如何你从来没有失去过自孩童时代就有的好奇心, 那么,你就能顺理成章在机器学习领域取得成就。这里详细的列出一个的必备的技能清单。
1. Python/C++/R/Java
如果你希望在机器学习领域获得一份工作,那么在某种程度上,你很可能必须学习这里所列出的所有编程语言。C++ 能够加速代码执行速度。R 在统计绘图方面十分出 色,Hadoop 是以 Java 为基础的,因此,你可能需要在 Java 中完成 Map/Reduce 算法。
2. Probability and Statistics(概率和统计)
概率和统计理论能够帮助你学习算法。很多常用的模型例如朴素贝叶斯、高斯混合模型和隐马尔可夫模型等,需要你有很好的概率和统计背景知识去理解。甚至你需要全身心的投入并且研究测度理论,同时需要理解一些统计指标,这些指标常作为模型评价标准,例如混淆矩阵,ROC曲线, P值等。
3. Applied Math and Algorithms(数学和算法)
对算法理论有相当深入的认识并且了解算法运行的机制, 能够帮助你对模型加以区分, 例如支持向量机模型 (译者注:支持向量机模型包括许多不同的核函数,核函数的不同, 具体模型的原理、应用和结论也不同)。 你需要理解一些数学方法, 例如梯度下降, 凸优化, 拉格朗格方法, 二次规划, 偏微分方程等类似的理论和方法。同时,你也需要熟悉求和运算[http://en.wikipedia.org/wiki/Summation]。
4. Distributed Computing(分布式计算)
大多数时候,机器学习需要处理大型的数据集。使用单机无法处理这些数据,因此,你需要通过集群进行分布式计算。像 Apache Hadoop 架构和 Amazon 的 EC2 云服务等项目能够使这一过程更加容易, 从而提高成本效益。
5. Expanding the Expertise in Unix Tools(使用Unix工具来拓宽你的专业知识)
你应该掌握专门为以下工作而设计的Unix命令或工具: cat, grep, nd, awk, sed, sort, cut, tr 等。由于所有这些处理过程都运行于基于linux平台的设备, 因此, 你需要熟悉这些工具。学习并很好的使用这些工具, 会使你的工作更加轻松。
6. Learning more about Advanced Signal Processing techniques(学习一些信号处理技术)
特征提取是机器学习最重根据部分之一。不同问题需要不同的解决方案, 你可以使用非常酷的高级信号处理算法,例如小波变换,剪切波变换,曲线波,轮廓波和 bandlets 变换等。学习时频分析技术,并用它来解决你的问题。如果你还不知道傅里 叶分析和卷积原理,你同样也需要学习这些知识。二进制码信号处理技术是解决问题 的重要方法。
7. Other skills
(a) 提升自己:你必须时刻保持与新技术的同步以应对将要到来的挑战。这也意 味着你必须注意以下几方面的最新动态:关于这些工具理论的变更日志和会议,算 法的研究论文、博客和会议视频等。(b) 大量阅读。阅读一些像 Google Map-Reduce, Google File System, Google Big Table,以及 e Unreasonable Effectiveness of Data 之类的 论文。此外,网上也有许多免费的机器学习书籍,你同样也应该读一读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23