
用一则小故事看产品数据分析。
网上有个故事很有趣,说3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板. 後来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们, 服务生偷偷藏起了2元, 然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱, 3个人每人9元,3 X 9 = 27 元 + 服务生藏起的2元=29元,还有一元钱去了哪里?
猛地一看,合情合理,并且陷入思维陷阱。可仔细一琢磨,发现了问题,最大的问题是逻辑混乱和偷换概念。服务生获取的2元包含在三人支出的27元内,通过偷换支出的概念来企图建立30=3*9+2+1的伪等式,造成1元“离奇丢失”的假象。
这里提供了两种思维方式来帮助大家梳理思路,还原事情本质。
按照金钱的流向,三个房客共流出了30元,在流通过程中,老板获得25元,服务生获得2元,最终还剩余3元流回到房客手中,满足30=25+2+3*1等式。
无需考虑中间的各种过程,从财务支出端看,3个房客支出27元;从收入获取端看,其中老板获得25元,服务生获得2元,27=25+2,等式成立。
数据分析是产品经理重要的一项技能,几乎所有的产品需求的出发点都是基于数据分析。产品的功能逻辑越复杂,用户量越大,决策对数据的依赖程度越大。 以上两种方法也是数据分析常用的两种方法,第一种是基于用户路径的数据分析,针对用户在各个步骤的行为分析,包括操作、流失和停留时长,对产品或服务进行 优化改进;第二种常常用来对节点定位,进行转化率、占比等数据的分析。
那么作为一个产品经理,在数据分析方面要重点关注那几点呢?我自己对数据方面接触的相对比较多,分享几点自己的心得。
目标明确是产品经理在做所有事情必须要考虑清楚的事情,不仅仅指数据。考虑清楚产品最重要满足了用户那些需求,项目在某个节点需要达成怎样的目标,具体在数据分析方面,就是考虑清楚数据的目的是什么。
在张嘴麻烦开发进行手动查询数据前(大部分公司的后台只有普通的常规性的数据,一些详细的数据一般需要手动查询和导出),产品经理一定要想清楚自己 想要从这份数据中得到怎样的结果。无论是了解产品截止到目前为止的累计用户数等了解性质的数据查询,或是为了分析付费转化率低原因等探索性质的问题分析, 一定要带着目的去获取数据。
在清楚了目的之后,对需要的关键数据已然心中有数,这时要对关键数据的定义清楚,这里的清楚包含两部分:
要清楚自己的数据是从客户端还是底层上报至服务器,上报的节点是什么,是否只在wifi状态下上报,在本地的字段保存有效期是多久,丢失的可能性有多大。了解数据上报机制能否方便产品经理更好的理解产品,对原始数据的准确率心中有底。
产品经理要明确各项统计数据的详细定义。拿常见的数据指标活跃用户来说,不同的产品有不同的定义,比如MIUI可能吧联网定义为活跃,而迅雷把有下载行为(新建、暂停、删除、下载完成等)定义为活跃,淘宝可能吧有购买行为定义为(有效)活跃用户。
明确指标定义是数据统计分析的前提,如果对数据指标不清楚,那数据分析也就无从谈起了。
数据基本正确的情况下,对目的的分析一般有两类:
定性分析是对实物“是什么”的定义,是对事物性质的归纳。比如9月初,迅雷用户活跃用户数大增,结合对迅雷服务器每天top100下载量排行榜分 析,均是iCloud流露女星相关文件,因此可以下结论:9月初用户活跃用户量增加主要是由iCloud热门事件引起的,这就是定性分析。
对应定性分析的“是什么”,定量分析就是“有多少”,是对事物数量的统计。9月初日活用户数增长了10%,就属于定量分析。
一般来说,数据分析就是对“是什么”做假设,然后用“有多少”来不断做验证的试错过程。通过不断的假设,分析,推翻假设,再次分析的方式来得出结论。根据数据量和目的的不同,采用不同的分析方法,常用的分析方法有对比分析、回归分析和相关分析法。
单独把excel列出来的主要原因是因为excel太重要了,除非特别庞大的数据量,否则excel几乎能满足你所需要的所有功能。excel目前支持59999条数据量,大部分人对excel的功能使用量不足1/3,一些公式函数的使用,大部分人该是没有接触过的。
在数据结论得出后,千万不要着急输出,一定要去做验证,同一组数据在不同的环境下能反映不同的问题。还拿9月份迅雷日活增加的数据来说,除了iCloud时间之外,可能迅雷做了应用内的增量升级,导致日活增加。这个时候就要来区分两种因素的权重,得出更准确的结论。
数据是很重要的一个做群体分类的渠道和方法,良好的数据分析能力能够 帮助产品经理做出更优的决策。但是又不能盲信数据,产品经理丰富的经验知识也是不可或缺,否则容易出现幸存者偏差的尴尬。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01