
CDA Level Ⅱ:建模分析师。两年以上数据分析岗位工作经验,或通过CDA Level Ⅰ认证半年以上。在政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。在Level Ⅰ的基础之上深入掌握高级多元统计方法,并且拓展时间序列分析和主要数据挖掘的理论知识与业界运用;能够熟练使用SAS、R、Matlab和SPSS中至少一个专业统计软件实现相关算法;熟悉使用SQL访问企业级数据库;具有按照数据挖掘标准流程进行项目需求分析、数据验证、建模与模型评估的能力。
级别 |
Level II |
理论 |
统计学、概率论和数理统计、多元统计分析、时间序列、数据挖掘(DM) |
软件 |
必要:EXCEL、SQL、SAS/SPSS 可选:Python、R、MATLAB;SQL等(/表示“或”) |
分析方法要求 |
除掌握基本数据处理及分析方法以外,还应掌握高级数据分析及数据挖掘方法(多元线性回归法,生存分析法,神经网络,决策树,判别分析法,主成分分析法,因子分析法,典型相关分析,聚类分析法,关联规则,支持向量机,bagging,boosting等)和可视化技术。 |
业务分析能力 |
至少在客户关系管理、管理会计、信用风险管理、人力资源管理等其中一个数据分析的常用领域内具有深入的业务经验,可以将业务目标转化为数据分析目标;熟悉企业内数据的生成过程,可以熟练的访问常见数据库;根据项目需求,以最快捷的方式获取业界最新案例和学界最新研究成果,并且转化为行动方针;可以熟练的提取所需信息,能够从海量数据中搜集并提取信息;根据项目目的,结合业务经验选取最优建模方法。 |
结果展现能力 |
报告体现数据挖掘的整体流程,层层阐述信息的收集、模型的构建、结果的验证和解读,对行业进行评估,优化和决策。 |
CDA Level Ⅱ培训课程大纲
详细大纲
时 程 |
大纲内容 |
第1天 |
主题:顾客关系管理及基础数据挖掘技术 |
企业使用之范围: 说明企业如何利用顾客关系管理来进行营销活动 |
|
理论介绍: 顾客关系管理系统的架构及其组成元素 企业如何利用顾客关系管理系统来进行营销活动 数据挖掘技术的功能分类 数据挖掘技术的绩效增益 数据挖掘技术的产业标准 数据挖掘基本观念与实际应用解说 |
|
SAS EM & SPSS Modeler实务案例操作: Introduction to SAS Enterprise Miner(SAS EM) & IBM SPSS Modeler Getting Started with SAS EM 12.1 & IBM SPSS Modeler 16 Creating a EM Project, Library and Diagram Creating a SPSS Modeler Project |
|
第1天 第2天 |
主题:基础数据挖掘技术 |
企业使用之范围: |
|
理论介绍: 数据挖掘技术的流程-SEMMA vs. CRISP DM 数据前处理(Data Preprocessing)技术 Attribute Selection(字段选择) *Data Integration(数据整合) Data Cleansing(数据清洗): *Wrong Value(错误值), *Outlier(离群值), *Missing Value(遗失值) Attribute Enrichment(字段扩充): *内/外部数据的扩充方法 Data Coding(数据编码): *Data Transformation(数据转换), *Data Reduction(数据精简), *Record Reduction(记录精简), *Attribute Value Reduction(域值精简), *Attribute Reduction(字段精简) |
|
SAS EM & SPSS Modeler实务案例操作: Defining a Data Source Exploring a Data Source * Exploring Source Data * Changing the Explore Window Sampling Defaults * Modifying and Correcting Source Data Managing Wrong Values/Outliers/Missing Values Transforming Inputs Recording Categorical Inputs |
|
第2天 第3天 |
主题:进阶数据挖掘技术 |
企业使用之范围: 说明企业如何利用关键变量发掘技术来发掘对项目目标有效之关键变量,以做为数据挖掘之输入变量 |
|
理论介绍: 训练数据与测试数据的产生方法 关键变量(Key Attributes)发掘技术 *卡方检定(Chi-square Test) *t检定及ANOVA检定(t Test & ANOVA Test) *利用决策树(Decision Tree)选择关键变量 |
|
SAS EM & SPSS Modeler实务案例操作: Creating Training & Validation Dataset Variable Selection Using Partial Least Squares for Input Selection Using the Decision Tree for Input Selection |
|
第3天 |
主题:进阶数据挖掘技术2 |
企业使用之范围: 说明如何利用分类技术之决策树来建立交叉销售(Cross-Selling)模型,以提升公司获利 |
|
理论介绍: 分类之决策树(Decision Tree) |
|
SAS EM & SPSS Modeler实务案例操作: Constructing a Decision Tree Model Optimizing the Complexity of Decision Trees Assessing a Decision Tree Understanding Additional Plots & Tables Automatic Tree Growth |
|
第3天 |
主题:进阶数据挖掘技术3 |
企业使用之范围: 说明企业如何利用分类技术之神经网络、支持向量机及分类多模型整合来建立信用评分(Credit Scoring)模型,以降低公司损失 |
|
理论介绍: 分类之神经网络(Neural Network) 分类之支持向量机(Support Vector Machine) 分类多模型整合(Ensemble)之装袋(Bagging)、增强(Boosting)学习 |
|
SAS EM &SPSS Modeler实务案例操作: Training a Neural Network Selecting Neural Network Inputs Increasing Network Flexibility Using the AutoNeural Tool Constructing a Support Vector Machine Constructing Ensemble Models by Using Bagging and Boosting Techniques Model Comparisons |
|
第4天 |
主题:进阶数据挖掘技术4 |
企业使用之范围: 说明企业如何利用模型评估技术来评估模型的优劣,以作为采用适当模型的准则 |
|
理论介绍: 模型评估(Model Assessment)技术 |
|
SAS EM & SPSS Modeler实务案例操作: Model Fit Statistics: * Comparing Models with Summary Statistics Statistical Graph: * Comparing Models with ROC Charts * Comparing Models with Score Rankings Plots * Adjusting for Separate Sampling Profit Matrix: * Evaluating Model Profit * Viewing Additional Assessments * Optimizing with Profit Internally Scored Data Sets: * Creating a Score Data Source * Scoring with the Score Tool * Exporting a Scored Table Score Code Modules: * Creating a SAS Score Code Module * Creating Other Score Code Modules |
|
第4天 |
主题:进阶数据挖掘技术5 |
企业使用之范围: 说明企业如何利用预测(Prediction)技术之回归树及类神经网络来建立数值预测模型-如预测客户之年收入,以利公司设计营销活动 |
|
理论介绍: 回归树(Regression Tree) |
|
SAS EM & SPSS Modeler实务案例操作: Review and Set the Decision Tree Node Review and Set the Neural Network Node |
|
第4天 |
主题:进阶数据挖掘技术6 |
企业使用之范围: 说明企业如何利用关联及序列分析技术来建立交叉销售(Cross-Selling)及提升销售(Up-Selling)模型,以提升公司获利 |
|
理论介绍: 关联分析(Association Analysis) 序列分析(Sequence Analysis) |
|
SAS EM & SPSS Modeler案例案例操作: Consolidating Categorical Inputs Market Basket Analysis Sequence Analysis |
|
第5天 |
环境搭建与数据转换
|
主体:数据分析环境搭建 1、Python程序安装 2、MySQL数据库安装、配置、建库;
|
|
主题:Python与其它软件之间数据转换 1、Python内部的数据存储类型 2、Python与CSV格式文件; 3、Python与EXCEL格式文件; 4、Python与MySQL; 5、Python与ODBC;
|
|
主题:用R作统计 两变量相关检验(两样本T检验、方差分析、卡方检验、相关检验); 主成分与因子分析; |
|
|
数据挖据完整流程案例 ——Python编程构造银行信用风险模型 |
第6天 |
主题:信用风险建模简介 银行信用风险监管体系与信用风险内部模型 主题:单变量检验与数据清洗 缺失值检验与处理方法 异常值检验与处理方法 解释变量粗筛 双变量关系检验法 数据分箱 |
主题:连续变量压缩技术 变量聚类 分类变量压缩技术 似完整分类数据问题 WOE方法 主题:逻辑回归建模技术 模型选择:逐步法、全子集法 根据经验Logit曲线进行连续变量转换 主题:编程模型评估技术 ROC曲线 K-S曲线 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10