京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用SPSS进行多元回归分析_数据分析师
在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型:
其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。
多元回归在病虫预报中的应用实例:
某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。分级别数值列成表2-1。
预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。
预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。
表2-1
|
|
x1 |
x2 |
x3 |
x4 |
y |
|||||
|
年 |
蛾量 |
级别 |
卵量 |
级别 |
降水量 |
级别 |
雨日 |
级别 |
幼虫密度 |
级别 |
|
1960 |
1022 |
4 |
112 |
1 |
4.3 |
1 |
2 |
1 |
10 |
1 |
|
1961 |
300 |
1 |
440 |
3 |
0.1 |
1 |
1 |
1 |
4 |
1 |
|
1962 |
699 |
3 |
67 |
1 |
7.5 |
1 |
1 |
1 |
9 |
1 |
|
1963 |
1876 |
4 |
675 |
4 |
17.1 |
4 |
7 |
4 |
55 |
4 |
|
1965 |
43 |
1 |
80 |
1 |
1.9 |
1 |
2 |
1 |
1 |
1 |
|
1966 |
422 |
2 |
20 |
1 |
0 |
1 |
0 |
1 |
3 |
1 |
|
1967 |
806 |
3 |
510 |
3 |
11.8 |
2 |
3 |
2 |
28 |
3 |
|
1976 |
115 |
1 |
240 |
2 |
0.6 |
1 |
2 |
1 |
7 |
1 |
|
1971 |
718 |
3 |
1460 |
4 |
18.4 |
4 |
4 |
2 |
45 |
4 |
|
1972 |
803 |
3 |
630 |
4 |
13.4 |
3 |
3 |
2 |
26 |
3 |
|
1973 |
572 |
2 |
280 |
2 |
13.2 |
2 |
4 |
2 |
16 |
2 |
|
1974 |
264 |
1 |
330 |
3 |
42.2 |
4 |
3 |
2 |
19 |
2 |
|
1975 |
198 |
1 |
165 |
2 |
71.8 |
4 |
5 |
3 |
23 |
3 |
|
1976 |
461 |
2 |
140 |
1 |
7.5 |
1 |
5 |
3 |
28 |
3 |
|
1977 |
769 |
3 |
640 |
4 |
44.7 |
4 |
3 |
2 |
44 |
4 |
|
1978 |
255 |
1 |
65 |
1 |
0 |
1 |
0 |
1 |
11 |
2 |
数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据
在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。编辑后的数据显示如图2-1。

图2-1
或者打开已存在的数据文件“DATA6-5.SAV”。
2)启动线性回归过程
单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。

图2-2 线性回归对话窗口
3) 设置分析变量
设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的
向右拉按钮,该变量就移到“Dependent”因变量显示栏里。
设置自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降水量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量显示栏里。
设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。
选择标签变量: 选择“年份”为标签变量。
选择加权变量: 本例子没有加权变量,因此不作任何设置。
4)回归方式
本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。因此在“Method”框中选中“Enter”选项,建立全回归模型。
5)设置输出统计量
单击“Statistics”按钮,将打开如图2-3所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为:

图2-3 “Statistics”对话框
①“Regression Coefficients”回归系数选项:
“Estimates”输出回归系数和相关统计量。
“Confidence interval”回归系数的95%置信区间。
“Covariance matrix”回归系数的方差-协方差矩阵。
本例子选择“Estimates”输出回归系数和相关统计量。
②“Residuals”残差选项:
“Durbin-Watson”Durbin-Watson检验。
“Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:
“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;
“All cases”选择所有观测量。
本例子都不选。
③ 其它输入选项
“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。
“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。
“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。
“Part and partial correlation”相关系数和偏相关系数。
“Collinearity diagnostics”显示单个变量和共线性分析的公差。
本例子选择“Model fit”项。
6)绘图选项
在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口。该对话框用于设置要绘制的图形的参数。图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。

图2-4“Plots”绘图对话框窗口
左上框中各项的意义分别为:
“Standardized Residual Plots”设置各变量的标准化残差图形输出。其中共包含两个选项:
“Histogram”用直方图显示标准化残差。
“Normal probability plots”比较标准化残差与正态残差的分布示意图。
“Produce all partial plot”偏残差图。对每一个自变量生成其残差对因变量残差的散点图。
本例子不作绘图,不选择。
7) 保存分析数据的选项
在主对话框里单击“Save”按钮,将打开如图2-5所示的对话框。

图2-5 “Save”对话框
①“Predicted Values”预测值栏选项:
Unstandardized 非标准化预测值。就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回
归模型拟合的预测值。
Standardized 标准化预测值。
Adjusted 调整后预测值。
S.E. of mean predictions 预测值的标准误。
本例选中“Unstandardized”非标准化预测值。
②“Distances”距离栏选项:
Mahalanobis: 距离。
Cook’s”: Cook距离。
Leverage values: 杠杆值。
③“Prediction Intervals”预测区间选项:
Mean: 区间的中心位置。
Individual: 观测量上限和下限的预测区间。在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放
预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值。
Confidence Interval:置信度。
本例不选。
④“Save to New File”保存为新文件:
选中“Coefficient statistics”项将回归系数保存到指定的文件中。本例不选。
⑤ “Export model information to XML file” 导出统计过程中的回归模型信息到指定文件。本例不选。
⑥“Residuals” 保存残差选项:
“Unstandardized”非标准化残差。
“Standardized”标准化残差。
“Studentized”学生氏化残差。
“Deleted”删除残差。
“Studentized deleted”学生氏化删除残差。
本例不选。
⑦“Influence Statistics” 统计量的影响。
“DfBeta(s)”删除一个特定的观测值所引起的回归系数的变化。
“Standardized DfBeta(s)”标准化的DfBeta值。
“DiFit” 删除一个特定的观测值所引起的预测值的变化。
“Standardized DiFit”标准化的DiFit值。
“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率。
本例子不保存任何分析变量,不选择。
8)其它选项
在主对话框里单击“Options”按钮,将打开如图2-6所示的对话框。

图2-6 “Options”设置对话框
①“Stepping Method Crite
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16