京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在过去的几十年中,机器学习领域发生了巨大的变化。诚然,有些方法已经存在很长时间了,但仍然是该领域的主要内容。例如,Legendre和Gauss已经在19世纪初提出了最小二乘的概念。在最近的几十年中,诸如神经网络等其他方法的最基本形式在1958年得到了极大的发展,而诸如支持向量机(SVM)等其他方法则是最近的。
由于监督学习的可用方法很多,因此经常会提出以下问题:**最佳模型是什么?**众所周知,这个问题很难回答,因为正如乔治·博克斯(George Box)所说的那样,所有模型都是错误的,但有些模型是有用的。特别是,模型的实用性主要取决于手头的数据。因此,这个问题没有普遍的答案。以下是一个更容易回答的问题:什么是最受欢迎的模型?。这将是本文的关注点。
出于本文的目的,我将使用一种常用方法来定义流行度。更准确地说,我将使用许多提及个别监督学习模型的科学出版物来代替受欢迎程度。当然,这种方法有一些局限性:
对于这一部分,我进行了两次分析。第一种分析是对发布频率的纵向分析,而第二种分析则比较了跨不同领域与机器学习模型相关的发布总数。
对于第一个分析,我通过从Google Scholar中抓取数据来确定了出版物的数量,Google Scholar考虑了科学出版物的标题和摘要。为了确定与个别监督学习方法相关的出版物数量,我确定了1950年至2017年之间的Google Scholar命中次数。众所周知,由于从Google Scholar抓取数据非常困难,因此本文参考ScrapeHero提供的有用建议来收集数据。
在分析中包括以下13种监督方法:神经网络,深度学习,SVM,随机森林,决策树,线性回归,逻辑回归,泊松回归,岭回归,套索回归,k近邻,线性判别分析和对数线性模型。其中,对于套索回归,搜索时考虑了搜索套索回归和套索模型。对于最近邻方法,搜索时术语有k-nearest neighbor和k-nearest neighbour,得到的数据集表示从1950年到现在,每个监督模型相关的出版物的数量。
为了分析纵向数据,我将区分两个时期:机器学习的早期阶段(1950年至1980年),在那儿只有很少的模型可用;而形成性的年份(1980年到现在),对机器学习的兴趣激增,很多时期开发了新模型。请注意,在以下可视化中,仅显示最相关的方法。
从图1中可以看出,线性回归是1950年至1980年之间的主要方法。相比之下,其他机器学习模型在科学文献中很少被提及。但是,从1960年代开始,我们可以看到神经网络和决策树的普及开始增长。我们还可以看到,逻辑回归尚未得到广泛应用,在1970年代末,提及的数量仅略有增加。
!
图2表明,从1980年代后期开始,科学出版物中提到的监督模型变得更加多样化。重要的是,直到2013年,科学文献中提到的机器学习模型的比率一直在稳定增长。该图尤其表明了线性回归,逻辑回归和神经网络的普及。正如我们之前所看到的,线性回归在1980年之前已经很流行。但是,在1980年,神经网络和逻辑回归的普及开始迅速增长。当Logistic回归的普及率在2010年达到顶峰时,该方法几乎与线性回归一样流行,但神经网络和深度学习(曲线神经网络/深度学习)的共同普及 图2)在2015年甚至超过了线性回归的流行程度。
神经网络之所以广受青睐,是因为它们在诸如图像识别(ImageNet,2012),面部识别(DeepFace,2014)和游戏(AlphaGo,2016)等机器学习应用中取得了突破。Google Scholar的数据表明,在最近几年中,科学文章中提到神经网络的频率略有下降(图2中未显示)。这是有可能的,因为术语深度学习(多层神经网络)已在一定程度上取代了术语神经网络的使用。使用Google趋势可以找到相同的结果。
剩下的,较少流行的监督方法是决策树和SVM。与排名前三的方法相比,提及这些方法的比率明显较小。另一方面,文献中提到这些方法的频率似乎也较少波动。值得注意的是,决策树和SVM的流行度都没有下降。这与其他方法(例如线性和逻辑回归)相反,后者在过去几年中被提及的数量已大大减少。在决策树和SVM之间,提到的SVM似乎显示出更有利的增长趋势,因为SVM仅在发明15年后就成功超过了决策树。
所考虑的机器学习模型的提及次数在2013年达到顶峰(589,803个出版物),此后略有下降(2017年为462,045个出版物)。
在第二个分析中,我想调查不同的社区是否依赖于不同的机器学习技术。为此,我查询了三个用于科学出版物的存储库:用于普通出版物的Google Scholar,用于计算机科学出版物的dblp,以及用于生物医学科学的PubMed。在这三个存储库中,我统计了13种机器学习模型的命中频率。结果如图3所示。
图3证明了许多方法是特定于各个领域的。接下来,让我们分析每个领域中最受欢迎的模型。
根据Google Scholar表明,这是五个最常用的监督模型:
总体而言,线性模型显然占主导地位,占监督模型命中率的50%以上。非线性方法也不甘落后:神经网络在所有论文中占16.8%,位居第三,其次是决策树(论文占8.4%)和支持向量机(论文占6.6%)。
根据PubMed的说法,生物医学中最流行的五个机器学习模型是:
在生物医学科学中,我们看到与线性模型相关的提及数量过多:五种最流行的方法中有四种是线性的。这可能是由于两个原因。首先,在医疗环境中,样本数量通常太少而无法拟合复杂的非线性模型。其次,解释结果的能力对于医疗应用至关重要。由于非线性方法通常较难解释,因此它们不适合医疗应用,因为仅靠高预测性能通常是不够的。
Logistic回归在PubMed数据中的流行可能是由于大量发表临床研究的出版物所致。在这些研究中,经常使用逻辑回归分析分类结果(即治疗成功),因为它非常适合于解释特征对结果的影响。请注意,Cox回归在PubMed数据中非常流行,因为它经常用于分析Kaplan-Meier生存数据。
从dblp检索的计算机科学参考书目中,五个最受欢迎的模型是:
计算机科学出版物中提到的机器学习模型的分布是非常不同的:大多数出版物似乎都涉及到最近的非线性方法(例如神经网络,深度学习和支持向量机)。如果我们包括深度学习,那么在检索到的计算机科学出版物中,有超过四分之三涉及神经网络。
图4总结了文献中提到的参数(包括半参数)模型和非参数模型的百分比。条形图表明,在机器学习研究中研究的模型(由计算机科学出版物证明)与所应用的模型类型(由生物医学和整体出版物证明)之间存在很大差异。尽管超过90%的计算机科学出版物都涉及非参数模型,但大约90%的生物医学出版物都涉及参数模型。这表明机器学习研究主要集中在最先进的方法上,例如深度神经网络,而机器学习的用户通常依赖于更具可解释性的参数化模型。
对科学文献中有监督学习模型的流行度分析表明了人工神经网络的高度流行。但是,我们也看到在不同领域中使用了不同类型的机器学习模型。特别是生物医学领域的研究人员仍然严重依赖参数模型。但有趣的是,这种情况逐渐在发生改变,随着可解释模型的研究更加深入,更复杂的模型一定会在生物医学领域得到广泛应用。
原文链接:https://www.kdnuggets.com/2018/12/supervised-learning-model-popularity-from-past-present.html?spm=a2c4e.10696291.0.0.354819a4R0jQUU
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16