京公网安备 11010802034615号
经营许可证编号:京B2-20210330
凝聚层次聚类说明
层次聚类可以分成凝聚(agglomerative,自底向上)和分裂(divisive,自顶向下)两种方法来构建聚类层次,但不管采用那种算法,算法都需要距离的相似性度量来判断对数据究竟是采取合并还是分裂处理。
凝聚层次聚类操作
采用层次聚类,将客户数据集分成不同的组,从github上下载数据:
https://github.com/ywchiu/ml_R_cookbook/tree/master/CH9下载
customer.csv文件
customer = read.csv("d:/R-TT/example/customer.csv")
head(customer,10)
ID Visit.Time Average.Expense Sex Age
1 1 3 5.7 0 10
2 2 5 14.5 0 27
3 3 16 33.5 0 32
4 4 5 15.9 0 30
5 5 16 24.9 0 23
6 6 3 12.0 0 15
7 7 12 28.5 0 33
8 8 14 18.8 0 27
9 9 6 23.8 0 16
10 10 3 5.3 0 11
检查数据集结构:
str(customer)
'data.frame': 60 obs. of 5 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Visit.Time : int 3 5 16 5 16 3 12 14 6 3 ...
$ Average.Expense: num 5.7 14.5 33.5 15.9 24.9 12 28.5 18.8 23.8 5.3 ...
$ Sex : int 0 0 0 0 0 0 0 0 0 0 ...
$ Age : int 10 27 32 30 23 15 33 27 16 11 ...
对客户数据进行归一化处理:
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:
一、min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
二、Z-score标准化方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

其中为所有样本数据的均值,为所有样本数据的标准差。
此处采用方法二
customer = scale(customer[,-1])
customer
Visit.Time Average.Expense Sex Age
[1,] -1.20219054 -1.35237652 -1.4566845 -1.23134396
[2,] -0.75693479 -0.30460718 -1.4566845 0.59951732
[3,] 1.69197187 1.95762206 -1.4566845 1.13800594
[4,] -0.75693479 -0.13791661 -1.4566845 0.92261049
[5,] 1.69197187 0.93366567 -1.4566845 0.16872643
[6,] -1.20219054 -0.60226893 -1.4566845 -0.69285535
[7,] 0.80146036 1.36229858 -1.4566845 1.24570366
[8,] 1.24671612 0.20737101 -1.4566845 0.59951732
[9,] -0.53430691 0.80269450 -1.4566845 -0.58515763
[10,] -1.20219054 -1.40000240 -1.4566845 -1.12364624
使用自底向上的聚类方法处理数据集:
hc = hclust(dist(customer,method = "euclidean"),method = "ward.D2")
> hc
Call:
hclust(d = dist(customer, method = "euclidean"), method = "ward.D2")
Cluster method : ward.D2
Distance : euclidean
Number of objects: 60
最后,调用plot函数绘制聚类树图
plot(hc,hang = -0.01,cex =0.7)

使用离差平方和绘制聚类树图
还可以使用最短距离法(single)来生成层次聚类并比较以下两者生成的聚类树图的差异:
hc2 = hclust(dist(customer),method = "single")
plot(hc2,hang = -0.01,cex = 0.7)

使用最短距离法绘制聚类树图
凝聚层次聚类原理
层次聚类是一种通过迭代来尝试建立层次聚类的方法,通常可以采用以下两种方式完成:
凝聚层次聚类
这是一个自底向上的聚类方法。算法开始时,每个观测样例都被划分到单独的簇中,算法计算得出每个簇之间的相似度(距离),并将两个相似度最高的簇合成一个簇,然后反复迭代,直到所有的数据都被划分到一个簇中。
分裂层次聚类
这是一种自顶向下的聚类算法,算法开始时,每个观测样例都被划分同一个簇中,然后算法开始将簇分裂成两个相异度最大的小簇,并反复迭代,直到每个观测值属于单独一个簇。
在执行层次聚类操作之前,我们需要确定两个簇之间的相似度到底有多大,通常我们会使用一些距离计算公式:
最短距离法(single linkage),计算每个簇之间的最短距离:
dist(c1,c2) = min dist(a,b)
最长距离法(complete linkage),计算每个簇中两点之间的最长距离:
dist(c1,c2) = max dist(a,b)
平均距离法(average linkage),计算每个簇中两点之间的平均距离:
最小方差法(ward),计算簇中每个点到合并后的簇中心的距离差的平方和。
调用plot函数绘制聚类图,样例的hang值小于0,因此聚类树将从底部显示标签,并使用cex将坐标轴上的标签字体大小缩小为正常的70%,此外,为了比较最小方差法和最短距离法在层次聚类上的差异,我们还绘制了使用最短距离法得到的聚类树图。
分裂层次聚类
调用diana函数执行分裂层次聚类
library(cluster)
dv = diana(customer,metric = "euclidean")
调用summary函数输出模型特征信
summary(dv)
如果想构建水平聚类树
library(magrittr)
dend = customer %>% dist %>% hclust %>% as.dendrogram
dend %>% plot(horiz = TRUE,main = "Horizontal Dendrogram")

水平聚类树
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26