京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车行业数据管理实践应用
数据管理和应用的长期规划和实践
汽车企业不论如何进行数据体系的管理,终究是为应用而生的,其背后是企业对于利润的的渴求及企业长远发展的愿景。从宏观层面来看,企业的长远发展,离不开科学的决策管理,而无数的理论和实践均证明,稳定、持续、高效、精准的数据体系,是科学决策管理的忠实保障。在经营管理层面,企业不但要树立数据和客户决策的思想、意识甚至企业文化,更要建立短、中、长期的数据管理和应用规划。落实到具体的内容,便是企业的商业智能(BI)系统建设,从数据的整合,到数据仓库、应用主题、分析和展示工具甚至预测性分析,需要走很长的道路。在具体的应用和执行层面,企业同样要有完整的规划和实际的动作。例如在营销层面,对于汽车企业不断增长的保有量,基于客户生命周期的营销响应模型、交叉模型、垂直销售模型、客户价值细分模型、客户流失预警模型等,都会为不同的业务部门提供可见的商业价值。
汽车企业的数据管理和应用体系,需要通过建立长期的规划并通过业务实践来进行指导和引领;从另外一个角度来看,此规划的目的性越强,则落实和实践的质量越好,反过来会拉动下一轮的规划和实践工作,以此不断循环往复,形成良性的互动机制。
信息技术方面的精进
首先是数据清理,大规模地系统化清理。对于不规范的部分进行排查并且做详细记录,例如同一个经销店出现不同的编码和名称、属性表混乱无序(如存在几百种车身颜色,上千种车辆型号等);之后需建立一套数据清理标准,依据数据标准对数据进行清理,将系统里冗余或者错误的信息进行清理,将基础数据进行规范化管理。大规模的数据清理,首先就需要配备知识库的专业软件工具(尤其是可清洗中文数据的软件)来实现常规性的清理(如匹配查重、规范化处理等),针对各种异常的、软件工具无法清理的数据质量状况,还需要进行后期的人工清理,以彻底根治问题。
其次还要进行数据的整合,数据的整合在数据层、系统层和应用层都可以实现。应用层的整合难度较大,成功率也不高;系统层的整合,即对众多业务系统进行整合,原来的每个系统对应新系统的一个子系统或者模块,而对于基础信息维护属于一个单独模块,只由特定人员维护,以保证基础数据的出处惟一性,可以追本溯源。而对数据层的整合,可以通过建立数据仓库(数据集市)或者主数据管理的方式实现,相对而言,数据仓库可以“治标”,而主数据管理则可以“治本”。
有了规范的数据和统一的平台,车企便将一些关联很强或者需要关联的数据整合在一起,用于企业的经营决策分析。企业可以跟据不同业务主题的需求进行建模,并通过专门的BI平台进行灵活展现分析成果:如自动的生成各种报表,通过OLAP功能进行多维度展示,KPI仪表盘直接服务于领导层的经营决策等。这便可以节约传统的报表制作的时间,将人力资源充分转移到分析报表及决策制定上去。
组织架构方面的演进
车企内部形成独立的信息管理和应用部门,是一个正在逐渐演进的趋势。这个部门在公司的层面上整理和汇总各业务部门对信息管理和应用的需求,同时也作为公司系统建设和改造的驱动部门,从全局的角度审视和规划公司的信息管理和应用之路。这个部门可由公司的IT部门拓展而成,也可以作为独立的部门而存在,它需要管理专家、业务专家、行业专家和技术专家四类人才共同维持其高效的运转。同时,该部门的设立和存在需要得到公司高层领导的认可及支持,并在公司内部对其业务给予大力的宣传和推动,以培养其协调和整合能力。
在企业实践当中,各业务部门和经销店才是信息系统的终端用户,是系统的最终使用者和利益相关者,故信息管理部门在开展其业务时,要本着服务公司整体利益,平衡各业务部门利益的原则,主动收集各部门的业务需求,并在一个更高的层面上进行汇总、加工和整体规划,最终将各部门的业务需求正确地转化为公司级的技术需求。同时,要注意在需求的整理和形成阶段,需与业务部门进行反复的沟通及确认,得到业务部门的理解与认可后,方可作为最终的系统需求来进行系统化的改善及发开,切忌误解业务需求或者自作主张设计需求。
管理体系方面的改进
企业文化是企业管理的无上之道,那么,车企就可以有意识地在企业内部宣贯?数据文化,提升各级部门的数据管理和数据思维意识,甚至设计更加精细化的业绩考核数字体系,从骨子里改变全员的观念。
同时,我们也看到,设计信息化系统的初衷,就是要服务于企业的管理体系,令其更加高效、便捷、精确和智能。管理体系的改进,从宏观和微观上都会极大的影响到企业的数据管理业务:从大处来讲,管理上的改进,必将对数据管理业务提出更高的需求。例如,目前汽车行业的营销理念,已经逐步由传统的大众营销向更为精准的数据库营销转变,这就要求车企在客户信息管理、销售过程管理、客户生命周期管理、客户接触中心(点)管理等多个方面,进行有效的融合,而这势必会对更为底层的数据管理提出更加苛刻的需求,迫使其管理质量不断提升。
从管理的细微处入手,任何管理流程和制度上的改进,都会在某个方面影响到企业数据管理质量的提升。例如,对于车企内部,担负基础信息(字典表和相关数据)录入和维护的工作人员,要强调其工作的重要性,并为其建立数据录入的审批和管理流程;同时专人录入数据后,要有专人对数据的准确性或规范性等质量问题进行核查,审批通过后方可上传入系统数据库当中;最后,还要将数据的准确性及规范性等作为相关员工的业绩考核指标之一,以使此业务正规化、系统化和常态化。再如,针对经销商,车企要严格的防范录入错误数据行为,严厉打击数据弄虚作假等行为,并将经销店数据质量作为重要业绩考核的指标之一(这个考核的度要拿捏准确,轻则不痛不痒,重则火上浇油)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27