
汽车行业数据管理实践应用
数据管理和应用的长期规划和实践
汽车企业不论如何进行数据体系的管理,终究是为应用而生的,其背后是企业对于利润的的渴求及企业长远发展的愿景。从宏观层面来看,企业的长远发展,离不开科学的决策管理,而无数的理论和实践均证明,稳定、持续、高效、精准的数据体系,是科学决策管理的忠实保障。在经营管理层面,企业不但要树立数据和客户决策的思想、意识甚至企业文化,更要建立短、中、长期的数据管理和应用规划。落实到具体的内容,便是企业的商业智能(BI)系统建设,从数据的整合,到数据仓库、应用主题、分析和展示工具甚至预测性分析,需要走很长的道路。在具体的应用和执行层面,企业同样要有完整的规划和实际的动作。例如在营销层面,对于汽车企业不断增长的保有量,基于客户生命周期的营销响应模型、交叉模型、垂直销售模型、客户价值细分模型、客户流失预警模型等,都会为不同的业务部门提供可见的商业价值。
汽车企业的数据管理和应用体系,需要通过建立长期的规划并通过业务实践来进行指导和引领;从另外一个角度来看,此规划的目的性越强,则落实和实践的质量越好,反过来会拉动下一轮的规划和实践工作,以此不断循环往复,形成良性的互动机制。
信息技术方面的精进
首先是数据清理,大规模地系统化清理。对于不规范的部分进行排查并且做详细记录,例如同一个经销店出现不同的编码和名称、属性表混乱无序(如存在几百种车身颜色,上千种车辆型号等);之后需建立一套数据清理标准,依据数据标准对数据进行清理,将系统里冗余或者错误的信息进行清理,将基础数据进行规范化管理。大规模的数据清理,首先就需要配备知识库的专业软件工具(尤其是可清洗中文数据的软件)来实现常规性的清理(如匹配查重、规范化处理等),针对各种异常的、软件工具无法清理的数据质量状况,还需要进行后期的人工清理,以彻底根治问题。
其次还要进行数据的整合,数据的整合在数据层、系统层和应用层都可以实现。应用层的整合难度较大,成功率也不高;系统层的整合,即对众多业务系统进行整合,原来的每个系统对应新系统的一个子系统或者模块,而对于基础信息维护属于一个单独模块,只由特定人员维护,以保证基础数据的出处惟一性,可以追本溯源。而对数据层的整合,可以通过建立数据仓库(数据集市)或者主数据管理的方式实现,相对而言,数据仓库可以“治标”,而主数据管理则可以“治本”。
有了规范的数据和统一的平台,车企便将一些关联很强或者需要关联的数据整合在一起,用于企业的经营决策分析。企业可以跟据不同业务主题的需求进行建模,并通过专门的BI平台进行灵活展现分析成果:如自动的生成各种报表,通过OLAP功能进行多维度展示,KPI仪表盘直接服务于领导层的经营决策等。这便可以节约传统的报表制作的时间,将人力资源充分转移到分析报表及决策制定上去。
组织架构方面的演进
车企内部形成独立的信息管理和应用部门,是一个正在逐渐演进的趋势。这个部门在公司的层面上整理和汇总各业务部门对信息管理和应用的需求,同时也作为公司系统建设和改造的驱动部门,从全局的角度审视和规划公司的信息管理和应用之路。这个部门可由公司的IT部门拓展而成,也可以作为独立的部门而存在,它需要管理专家、业务专家、行业专家和技术专家四类人才共同维持其高效的运转。同时,该部门的设立和存在需要得到公司高层领导的认可及支持,并在公司内部对其业务给予大力的宣传和推动,以培养其协调和整合能力。
在企业实践当中,各业务部门和经销店才是信息系统的终端用户,是系统的最终使用者和利益相关者,故信息管理部门在开展其业务时,要本着服务公司整体利益,平衡各业务部门利益的原则,主动收集各部门的业务需求,并在一个更高的层面上进行汇总、加工和整体规划,最终将各部门的业务需求正确地转化为公司级的技术需求。同时,要注意在需求的整理和形成阶段,需与业务部门进行反复的沟通及确认,得到业务部门的理解与认可后,方可作为最终的系统需求来进行系统化的改善及发开,切忌误解业务需求或者自作主张设计需求。
管理体系方面的改进
企业文化是企业管理的无上之道,那么,车企就可以有意识地在企业内部宣贯?数据文化,提升各级部门的数据管理和数据思维意识,甚至设计更加精细化的业绩考核数字体系,从骨子里改变全员的观念。
同时,我们也看到,设计信息化系统的初衷,就是要服务于企业的管理体系,令其更加高效、便捷、精确和智能。管理体系的改进,从宏观和微观上都会极大的影响到企业的数据管理业务:从大处来讲,管理上的改进,必将对数据管理业务提出更高的需求。例如,目前汽车行业的营销理念,已经逐步由传统的大众营销向更为精准的数据库营销转变,这就要求车企在客户信息管理、销售过程管理、客户生命周期管理、客户接触中心(点)管理等多个方面,进行有效的融合,而这势必会对更为底层的数据管理提出更加苛刻的需求,迫使其管理质量不断提升。
从管理的细微处入手,任何管理流程和制度上的改进,都会在某个方面影响到企业数据管理质量的提升。例如,对于车企内部,担负基础信息(字典表和相关数据)录入和维护的工作人员,要强调其工作的重要性,并为其建立数据录入的审批和管理流程;同时专人录入数据后,要有专人对数据的准确性或规范性等质量问题进行核查,审批通过后方可上传入系统数据库当中;最后,还要将数据的准确性及规范性等作为相关员工的业绩考核指标之一,以使此业务正规化、系统化和常态化。再如,针对经销商,车企要严格的防范录入错误数据行为,严厉打击数据弄虚作假等行为,并将经销店数据质量作为重要业绩考核的指标之一(这个考核的度要拿捏准确,轻则不痛不痒,重则火上浇油)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15