京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之读取Excel及csv数据
1、读取R内置数据 data()
data() #查看数据集列表
data(mtcars) #载入数据集
如用library()载入程序包后,可用data(package=”“)查看包内附带的数据集。
library(vcd)
data(package="vcd") #查看vcd包中的数据集
data(Arthritis,package = "vcd") #载入数据集Arthritis
2、键盘输入数据
a、调用文本编辑器edit()。
首先必须创建一个空的数据框或者矩阵,且数据框或者矩阵中的变量名与变量类型必须与最终数据集一致。下列代码创建了一个名为mydata的数据框,数据框里保存了姓名,英语成绩,数学成绩三个变量,且通过调用文本编辑器edit()可修改或增加变量。
mydata<-data.frame(name=character(0),English=numeric(0),Math=numeric(0)) #创建一个空的数据框
mydata<-edit(mydata)
mydata
程序运行结果如下:

可在此数据编辑器中直接输入数据,或者通过单击来修改变量名或者变量类型,也可以增加变量。
b、直接在程序中嵌入数据,代码如下:
> mydatatext<-"
+ name English Math
+ 张三 92 93
+ 李四 80 92
+ "
> mydata<-read.table(header=T,text=mydatatext)
> mydata
name English Math
1 张三 92 93
2 李四 80 92
3、导入带分隔符的文本文件(ASCII)
使用read.table()导入一个带分隔符的文本文件,其输出类型为数据框。语法如下:
read.table(file , header=F , sep=”” ,quote , row.names , col.names , na.strings=”NA” , colClasses , skip , stringsAsFactors=T, blank.lines.skip=T, strip.white=F, text,…)
下面使用read.table()来读取一个分隔符为逗号,名为“分数”的csv文件,代码如下:
>mydata<-read.table(header=T,file="C:\\Users\\mx\\Desktop\\分数.csv",sep=",") #路径中的单右斜杠“\”需换成双右斜杠“\\”或者单左斜杠“/”。文件名后一定要加上扩展名
> mydata
name English Math
1 张三 92 93
2 李四 80 92
与read.table()用法类似的函数还有read.csv(),read.delim()。
*
*4、读取Excel数据read.xlsx()
a、将其保存为csv格式,用前文所描述的方法读取
b、直接用read.xlsx()读取。读取前确保已安装“xlsxjars”,”rJava”,”xlsx”包,且第一次使用前需确保配置了Java环境。下载安装的Java的位数必须与电脑位数、R的位数一致。
语法: read.xlsx(file, n),其中n表示要读取的工作表序号。
如用read.xlsx()读取以上名为“分数”的.xlsx形式,代码如下:
> library(xlsxjars)
> library(rJava)
> library(xlsx)
> mydata<-read.xlsx("C:\\Users\\mx\\Desktop\\分数.xlsx",1,encoding="UTF-8") #encoding="UFT-8"调整中文字集符,防止表格中的中文读取时乱码
> mydata
name English Math
1 张三 92 93
2 李四 80 92
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05