
我是如何从物理学转行到数据科学领域
很多人问我是如果从物理学转行到数据科学,本文讲述了关于我为什么决定成为一名数据科学家,以及我是如何追求并实现目标的。希望能够最终鼓励更多的人追求自己的梦想。让我们开始吧!
CERN 暑期项目
2017年CERN暑期项目
CERN(欧洲核子研究组织)暑期项目为物理、计算机和工程专业的本科生提供了千载难逢的机会,让他们前往瑞士日内瓦,与顶尖科学家一起参加研究项目。
2017年6月,我非常幸运地被选中参加这个项目。粒子物理学是我的研究方向,能够参加CERN的研究项目让我欣喜不已。在为期2个月的项目期间,针对CMS(紧凑μ子线圈)实验,我通过世界级LHC(大型强子对撞机)计算网格和云计算进行了相关分析和模拟。
CMS(紧凑μ子线圈)
此外,暑期项目还包含了一系列围绕粒子物理和计算领域的讲座、研讨会。
在此期间,通过参加讲座、研讨会以及项目,我开始接触到机器学习和大数据分析。令我惊讶的是,机器学习技术能够处理大量的数据,并精确的对各种微观粒子进行分类和检测。接着我毫不犹豫地投入了对机器学习和云计算的探究与学习。
谁知道这次经历会成为我人生中的转折点,我打算投身数据分析。然而此时我对数据科学的定义仍比较模糊。
数据科学领域初探
当我一结束暑期项目回到新加坡,我就对解数据科学进行了一些探究,令我惊讶的是,这个领域并没有明确的定义。但总的来说,在我看来,数据科学涵盖了编程、数学、统计知识以及一定专业知识。
尽管如此,我还是惊讶于数据是如何被用来为公司得出分析见解,并驱动商业价值。从理解业务问题,到收集和进行数据可视化,直到构建原型开发阶段,进行微调,并将模型部署到实际应用程序中,在这些过程中我发现了通过使用数据解决复杂问题、完成挑战的满足感。
“没有数据,你只是一个空有想法的人”。
—— W. Edwards Deming
我的出发点—数据可视化
Tableau Dashboard
2017年8月,作为进入数据科学领域的第一步,我参加了由Tableau和IMDA(Infocomm Media Development Authority)共同组织的NIC Face-Off 数据竞赛,当中我首次接触到数据可视化。
当中我有机会使用Tableau Public对各种开放数据源进行可视化,这些数据调查了东南亚雾霾的起源,并提供了可操作性的的见解。
第一份数据分析兼职实习
在同月,我偶然发现了一个机会成为了mobilityX的一名数据分析实习生,这是一家由SMRT资助的初创公司。考虑到可读性和广泛社区的支持,我使用Python进行编程。
其实在我大一开始学习编程时,我想过放弃。为了运行一个简单的for循环,我可能要花费好几天甚至几周。而且我常常会感觉自己没有天赋。
直到大三我和教授开始一项研究项目,我才开始对编程产生兴趣。我开始使用Python进行构建,并喜欢上了这个编程语言。
我开始不在自我怀疑,而是采用以下的步骤学习编程:
1. 理解编程的基本逻辑;
2. 选择一种编程语言并学习如何使用(语法等);
3. 练习,练习,再练习;
4. 重复步骤1-3 。
实习一直持续到2018年3月,期间我的收获颇多。我学会使用PostgreSQL和Python进行数据清理和操作、web抓取以及数据提取。
数据科学全职实习
之前经历进一步强化了我对数据科学的喜爱。之后我计划了自己的学习时间表,并在2017年12月毕业后,开始了在Quantum Inventions的数据科学全职实习。
看到这里你可能会问 ,为什么我选择去实习而不是一份数据科学的工作?那就是在申请全职工作之前,能够通过处理实际的数据,获得更多的技术知识,并从头开始体验数据科学的整个流程。
学习资源
以下总结了我的学习过程,当中我接受了很多人的帮助,并充分利用了大量的在线资源。
1. 推荐书籍
我读的第一本数据科学的书是《统计学习导论:基于R应用》(An Introduction to Statistical Learning — with Applications in R)。这本书对于初学者是非常不错的选择,当中着重统计建模和机器学习的基本概念,并提供详细而直观的解释。如果你很擅长数学,那么你肯定会喜欢这本书:《统计学习基础》(The Elements of Statistical Learning)。
还有一些相关书籍也是不错的选择,比如Sebastian Raschka的《面向初学者的机器学习》(Machine Learning for Absolute Beginners),《Python 和机器学习》(Python Machine Learning);以及Jake VanderPlas的《Python数据科学手册》( Python Data Science Handbook)。
2. 在线课程
Coursera
我推荐Coursera联合创始人吴恩达的《机器学习》课程。他能够把复杂的概念分解成更简单内容。该课程为期11周,主要围绕监督式学习、无监督学习以及机器学习的实际应用。当构建机器学习模型时,我仍然会参考该课程讲义,用来解决欠拟合或过度拟合的问题。
Udemy
Jose Portilla的《在数据科学和机器学习中使用Python》(Python for Data Science and Machine Learning Bootcamp)是不错的选择。该课程从Python基础知识开始,逐步指导你如何使用scikit-learn和TensorFlow实现各种机器学习和深度学习代码。本课程详细介绍了Python中各种库,用来实现机器学习模型。
此外,我强烈推荐Kirill Eremenko和Hadelin de Ponteves的课程《深度学习A-Z:人工神经网络》( Deep Learning A-Z™: Hands-On Artificial Neural Networks )。通过该课程,我第一次接触到深度学习。课程主要通过实际操作的编程教程,把握监督和无监督深度学习。
Lynda
我推荐Lillian Pierson的课程《在数据科学基础训练中使用Python》( Python for Data Science Essential Training 。该课程以统计分析为基础,围绕数据管理和数据可视化。
3. LinkedIn
LinkedIn是与数据科学社区有紧密联系的的强大平台。人们愿意在上面分享他们的经验、想法和知识,从而帮助他人。在LinkedIn上,我学习到了很多,无论是技术知识还是职业咨询等。
4. 其他资源
许多数据科学领域的初学者经常会被大量的资源所淹没。除了以上资源平台以外,还有Towards Data Science、Quora、DZone、KDnuggets、Analytics Vidhya、DataTau、fast.ai 等都是不错的选择。
建立作品集
个人作品集能够展示你的经验和能力,特别是当你没有数据科学方面的博士学位时。
由于我只有物理学的学士学位,我没有计算机科学相关学位,在大学的前三年中我也没有任何相关的数据科学作品。建立个人作品集是很重要的,因为公司需要知道你学了些什么,如何能过为公司业务贡献价值。这也是我决定实习和学习在线课程的原因。
不久之前,我和朋友一起参加由Shopee和工程与科技协会(IET)组织的Kaggle 机器学习挑战赛。这是我第一次参加Kaggle比赛,我学习了如何使用卷积神经网络(CNN)和迁移学习进行图像识别。
结语
我分享了我进入数据科学行业的一些情况,希望我的经历能够让你觉得数据科学其实很有趣,并不那么吓人。直到我接触到数据科学,我才愈发感受到什么是学无止境。我希望本文能够激励你去挑战自己,实现自己的梦想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29