
CDA与腾讯、苹果、Google等企业成功入选教育部产学合作协同育人项目
2018年4月28日,教育部高等教育司发函〔2018〕18号《教育部高等教育司关于公布有关企业支持的产学合作协同育人项目申报指南(2018年第一批)的函》。
为贯彻落实《国务院办公厅关于深化高等学校创新创业教育改革的实施意见》(国办发〔2015〕36号)和《国务院办公厅关于深化产教融合的若干意见》(国办发〔2017〕95号)精神,深化产教融合、产学合作、协同育人,经企业申报、产学合作协同育人项目专家组审议通过,形成了2018年第一批产学合作协同育人项目申报指南。
本批次申报指南中,共有346家企业支持项目14576项。
本次项目,北京国富如荷网络科技有限公司CDA数据分析师与腾讯、京东、百度、苹果、Google、IBM等企业成功入选,主要在“教学内容和课程体系改革项目”,“师资培训项目”,“实践条件和实践基地建设项目”,“创新创业教育改革项目”四个方面进行产学合作协同育人。详情如下:
l 教学内容和课程体系改革项目
"大数据分析方向的教材编写及课程内容建设,充分结合产业一线实践和案例,引入行业相关企业案例,产学结合推动高校教材和课程的建设改革,突出实践,培养创新型大数据分析人才。
CDA数据分析研究院将为参与课程建设的老师提供必要的实验环境、数据以及实验项目,合作高校老师可以围绕CDA数据分析研究院提供的相关素材,结合本专业的实际情况,将大数据开发融入到培养计划,并在此基础上编写教材。CDA数据分析研究院将会根据参与老师的工作量和贡献程度,为每个项目提供总额3万元的活动经费。 "
l 师资培训项目
"根据高校学科建设的需要,由各合作高校派遣学科带头人、骨干教师,CDA数据分析研究院提供切合社会实际需求的课程,努力为院校培养大数据分析方向的优秀师资,推进教学改革与创新工作,帮助合作院校完善学科建设。带动参训教师积极参与教学培训、课题研究、技术研讨、学习和交流活动。根据条件设立面向优秀师资的专题项目研究中心,组建项目团队,引导优秀师资发挥桥梁作用,达到和企业协同育人的目的。
在培训过程中,为了提高培训效果,结合系统、科学的视频的理论课程和暑期集中的实践课程的方式,让参加培训的老师能够循序渐进地掌握相关的技能,并通过圆桌讨论、项目演练等方式,加强参训教师的思考深度和实践能力。"
l 实践条件和实践基地建设项目
"高校与CDA数据分析研究院联合建设实践条件,以共建实验室的方式,通过高校提供场地,企业投入设备和课程,弥补高校在投入上的不足,提高合作高校的硬件水平, 完善高校的实践条件,培养符合行业需求的大数据分析人才。
本项目面向全国高等学校经济学、经济统计学、会计学、计算机科学与技术、软件工程、数学应用、统计学等经管、金融或计算机相关专业,以提高高校实践条件为目标,投入先进的大数据分析设备及平台,并将企业实际的开发流程和实际项目引入到合作高校,从而提升高校师生的动手能力。 "
l 创新创业教育改革项目
为了响应国务院关于“大众创业,万众创新”的号召,更好培养大学生的创新创业精神,借助CDA数据分析研究院的“双创教育”平台,在合作高校中建设创新创业课程体系及实践训练体系,提高创新创业实训效果和质量,落实创新创业成果孵化,搭建宣传展示平台。同时,将在通过在合作高校中引入创新创业孵化器,探究创新创业教育产学合作模式,积累合作经验,打造典型案例,为更多高校在高新产业人才创新创业体系建设健全工作提供参考,并带动更多企业共建创新创业教育产学合作生态。
此次CDA数据分析师(北京国富如荷网络科技有限公司)与教育部的合作,为高校大数据与数据分析的教育起到了正向推进作用,也符合了“CDA人”组织的理想,是CDA发展中一次意义深远的事件。相信在产、学双方的共同努力,数据分析与大数据人才会层层辈出,走向企业,走向国际。
关于CDA
经管之家“CDA数据分析师”品牌(运营公司:北京国富如荷网络科技有限公司),致力于为社会各界数据分析爱好者提供优质、科学、系统的数据分析教育。
截止2017年底,CDA已与国内多所高校进行了战略合作,搭建大数据实验室与共建专业;已出版13本CDA数据分析师系列丛书,市场发行量数万册;已进行100多期数据分析及大数据系统培训课程,培养学员超过40000多名;已举办七届全国数据分析师认证考试,持证人数千人;已开展了四届中国数据分析师行业峰会(CDA SUMMIT),每届参会人数逾3千人;中国数据分析师俱乐部(CDA CLUB)每月举办各类型沙龙会议等活动共100多期。
2016,CDA研究院加入由工信部指导下的“中国大数据生态产业联盟”理事会成员,分管教育事业。
2017,CDA与工信部赛迪达成战略合作,经管之家“CDA数据分析师”品牌得到了社会各界的普遍认可。“CDA数据分析师”队伍在业界不断壮大,对数据分析人才产业起到了巨大的推动作用。
——CDA数据分析研究院
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28