Stata软件对截断和删失数据处理方法介绍
截断和删失是完全不同的现象,都会导致我们的样本不完整。这些现象出现在医疗科学、工程、社会科学和其他研究领域。如果忽略截断和删失,当我们分析数据时,我们的人口参数估计就会不一致。
截断和删失会出现在处理样本的过程中,那我们就从定义左截断和左删失开始:
当低于阈值的个体在样本中不存在时,我们的数据就属于左截断。比如,我们想研究某些鱼的大小,以捕鱼网为样本,鱼小于鱼网,所以在我们的样本中是不存在的。
我们的数据从K开始左删失,如果每个个体值在样本中存在并低于K,但实际值未知。例如,我们有一个测量仪器,不能检测到一定水平以下的值时,就会发生这种情况。
我们主要讨论左截断和左删失,但是我们讨论的概念可以应用到所有的截断和删失中去:右截断、右删失和区间。
当执行截断或删失数据的估计时,我们需要使用一些工具来说明这些不完整的数据。对于截断线性回归,我们可以使用truncreg命令;对于删失线性回归,我们可以使用intreg和tobit命令。
这篇文章,我们将要分析截断数据和删失数据的特征,并讨论用truncreg命令和tobit命令来说明不完整的数据。
截断数据
案例:皇家海军陆战队
Fogel et al.(1978)发布了皇家海军陆战队人员的身高的数据集,此数据可以扩展到2个世纪。它可以用来确定不同时期,英国男性的平均身高。Trussell and Bloom (1979)指出样本被截断,由于新兵最低身高的限制。数据被截断了(而不是删失),因为身高低于最低限制的个人都没有出现在样本中。考虑到这一事实,他们拟合了1800年到1809年期间皇家海军陆战队身高的截断分布。
由于Trussell和Bloom提到的问题,我们使用了人工数据集。我们假设人口数据服从正态分布μ=65和σ=3.5,并且都是左截断到64.
我们使用一个直方图来总结我们的数据:
可以看到截断点,没有小于64的数据。
如果我们忽略截断,会发生什么呢?
如果我们忽略截断,将不完整的数据视为完整的,样本均值与总体均值就会不一致,因为截断点以下的所有观测值都是缺失的。在我们的实例中,真实的均值95%都在置信区间预测平均值外。
我们可以将样本直方图与忽略截断后得出的正态分布进行比较,并且把这些值看成是人口均值和标准差的估计。
使用truncreg考虑截断
我们可以使用truncreg来估计潜在非截断分布的参数。考虑左截断64,可以使用选项ll(64)。
现在估计的值接近我们的实际模拟值μ=65,σ=3.5。
让我们将截断密度重叠到数据直方图中去。
截断分布适合我们的样本,我们分析人口分布均值等于65,标准偏差等于3.5.
删失数据
现在我们看一下删失数据的案例,看看他们和截断数据之间的区别。
案例:家庭表面尼古丁的含量情况
Matt et al.在2004年进行了一项研究,对烟草烟雾污染吸烟者家庭的整个表面进行了评估。非常有趣的一项测量是家具表面的尼古丁含量情况。每个家庭中的擦拭样本来自每件家具。然而,尼古丁污染低于一定限度的,测量仪检测不到。
数据被删失了,而不是被截断了。当尼古丁污染低于检测极限值时,样本中仍然包含了尼古丁的检测值,这个检测值就等于最低极限值。被这项研究中的这个问题启发,我随意创建了一个人工数据集。尼古丁污染水平的日志被假定为正常。在这里,lognlevel包含尼古丁含量。用于模拟日志尼古丁含量的参数,删失数据是μ=ln(5),σ=2.5,左删失数据为0.1。我们开始绘制直方图。
直方图左侧有一个尖峰,因为在检测极限以下的值被记录为等于极限值。计算样本的原始均值和标准偏差,将不会为潜在的未经审查的高斯分布提供适当的估计。
均值和标准偏差分别估计为1.68和2.4,而实际参数为ln(5) =1.61 和2.5。
使用Tobit账户审核
我们估计均值和标准偏差分布,并使用ll选项的tobit来考虑左删失值(如果审核极限值随观测值而变化,那么可以用intreg来代替)。
潜在的未经审核的分布估计的均值为1.62,标准差2.49. 我们把未经审核的分布叠加到直方图中:
潜在的未经审核的分布匹配直方图的一部分,左边尾部补偿审查点的尖峰。
总结
在抽样数据中,删失和截断是不同的两种现象。截断高斯抽样中潜在的人口参数可以用truncreg来估计。删失高斯抽样中潜在的人口参数要用intreg或tobit来估计。
结语
我们已经讨论了删失和截断的概念,也举例说明了这两个概念的意思。与本次讨论有关的要点如下:
本次讨论是基于高斯模型之上的,但是主要的概念可以扩展到任意的分布中。以上的例子在没有协变量的情况下拟合回归模型,因此,我们可以更好地可视化删失和截断分布的形状。然而,这些概念很容易扩展到协变量的回归框架中,并且特定观测值的期望值是协变量函数。
我们已经讨论过使用truncreg和tobit来处理删失和截断数据。但是这些命令也可以应用到非删失和非截断数据中,只要这些数据是特定分布中的人口抽样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03