
数据统计学习的5个基本流程
统计学、大数据应用很广泛,常常被提及!统计学习也有一定的规律流程,下面我们大圣众包小编分享一位朋友关于统计学习流程步骤的看法,看看他怎么说。
统计学习现在市面上谈论到的数据挖掘基本上都是基于统计学习的监督学习或非监督学习问题。尤其以监督学习应用面更广。
统计学习的一般流程
得到一个有限的数据集合
确定所有的学习模型集合
确定模型选择的准则,就是学习的策略
实现求解最优模型的算法并通过学习方法选择最优模型
利用学习得到的最优模型对新数据进行分析或预测
步骤一:得到一个有限的数据集合
涉及到以下多个流程:
1、数据的采集
2、原始数据的格式化、标准化
3、原始去噪,去掉错误的值(而不是误差值,这里又涉及到一个复杂的问题,如何界定错误数据)
4、预处理(针对具体需要研究的问题、抽取相应地特征组成需要研究的数据集合)
步骤二:确定所有的学习模型集合
这个问题取决于我们选择怎么样的学习方法。常见得学习方法有:
1、感知机模型
2、k近邻法
3、朴素贝叶斯法
4、决策树
5、逻辑斯谛回归和最大熵模型
6、支持向量机
7、提升方法AdaBoost
8、EM算法
9、隐马尔可夫模型
10、条件随机场
而且这些算法还可以进行变异、组合然后形成新的算法模型。也是通常认为中数据挖掘比较核心的部分。
步骤三:确定模型选择的策略
一般来说,当你确定了你的学习方法后,在学习的过程中会产生很多个模型。而如何在这些模型中间挑选最优的模型,成为了我们亟待解决的问题。
一般衡量一个模型的优秀程度我们使用两个指标:
1、拟合能力
2、泛化能力
拟合能力
表示模型的计算结果和实际结果的相差程度,我们一般使用风险函数来衡量。而风险函数是损失函数的期望。所以我们其实是使用损失函数来衡量一个模型的期望。
常见的损失函数:
1、0-1损失函数
2、平分损失函数
3、绝对值损失函数
4、对数损失函数
损失函数越小,模型的拟合能力就越好。
泛化能力泛化能力是指模型对新数据的预测能力。一般来说,越复杂的模型的拟合能力越强,但是泛化能力越弱。所以我们需要选择一个适当复杂度的模型,使其泛化能力和拟合能力都足够强。
而衡量一个模型同时具有较好地泛化能力和拟合能力,我们一般用结构风险函数。
结构风险函数是在风险函数的基础上面加上一个罚项。通过罚项来降低复杂度高的模型的结构风险函数值。从而达到筛选出合适的复杂度的模型的目的。
罚项一般取特征空间w的范数,一般有:
1、L0范数
2、L1范数
3、L2范数
4、核范数…
步骤四:实现求解最优模型的算法并通过学习方法选择最优模型
求解最优模型的算法其实就是求解结构风险函数最小值得算法,即结构风险函数最优化的问题。
如果结构风险函数在我们所关心的区域中是凸函数的话,那么任何局部最小解也是全局最优解。现在已经有稳定,快速的数值计算方法来求二次可微地凸函数的最小值。
然而,很多时候我们没有办法通过结构风险函数直接算出它的最小值。我们只能通过一些迭代的方式获得局部最优解。
常见的通过迭代的方式获得局部最优解的算法有:
1、梯度下降法
2、牛顿法
3、共轭梯度法
4、线性搜索
5、置信域方法
另外还有一些算法:
1、模拟退火
2、遗传算法
3、类免疫算法
4、演化策略
5、差异演化算法
6、微粒群算法
7、神经网络
8、支持向量机
步骤五:利用学习得到的最优模型对新数据进行分析或预测
到这一步一般来说已经成功了,然后往往现实是残酷的,辛辛苦苦20年,一朝回到解放前。
往往学习得到的模型在实际使用过程当中并不是那么的理想。这里面有很多种原因:
有可能是原始数据的原因
有可能是特征选择的原因
有可能是模型的原因
有可能是最优模型算法的问题
有可能是代码错误
总之,以上的所有步骤的所有细节都可能导致你的模型不够优秀。这就需要你再次的思考这个问题,去不断的优化你的模型。直到得到一个不错的模型。
小结
其实数据挖掘涉及的东西远比我上面说的这点东西多的多,我上面提到的还只是监督学习。就光我上面提到的几个步骤。其实每一个步骤都有很多很多东西可以讲,可以研究,工程方面的、算法理论方面的等等等等。
一入数据挖掘深似海,从此奋斗到天明。
数据挖掘还是很有意思的,你可以用机器的力量、数学的力量理解世界的运行规律。去预测他或者利用你研究到的东西做一些有意思的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28