京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从大数据的出现开始,对大数据的争议似乎就一直未断过,似乎每家软件厂商、每家咨询公司,以及每个思想领袖都在尝试着对“大数据”做出准确的定义。尽管目前还没有出现这样的定义,但是打破关于大数据的神话将有助于我们认识大数据。
你能够获得所有的数据
我们从来都没有像现在这样能够获得如此多的数据。此前一直被人们所忽视的兆字节、拍字节和艾字节数据如今已经出现了。在如今的工业化社会中,平均每个人一天所消费的信息量超过了生活在十五世纪的人一生所消费的信息量。目前还没有一个人或一家公司能够存储和检索关于某一特定主题的全部数据,更不要说是所有数据了,包括谷歌在内。谷歌索引的只是表层网中的信息,而不是深层网中的信息。专家估测,后者的规模是前者的25倍。因此,在我们进行搜索时,我们所获得的信息量仅仅是互联网信息量中的4%~6%.
你需要所有的数据
虽然数据越多帮助越大,但这并不意味着在做商业决策时你需要所有的数据。正在高效利用大数据的公司已经认识到,他们不需要获得所有的相关信息。几乎每天都会涌现出大量新的数据源,但是并不是所有的数据都有价值。例如,电子邮件信息常常为我们提供了洞察企业状况的宝贵信息。精明的公司正在挖掘个人信息,以评估员工的情绪,以及谁可能会辞职。但这并不是说所有的电子邮件都具有相同的价值。因为分析垃圾邮件没有任何意义。你并不需要所有的数据。数据当然是越多越好,但是请不要浪费时间尝试做这一不可能实现的事情。
大数据会给我们明确的答案
经常听到这样一句商业格言:“处理你能够处理的数据,并从中获得更多信息。”我们在利用所获信息做商业决策时会遇到许多问题。而事实上,我们根本无法利用这些信息完全准确地预测出公司的并购、产品的发布、新的风险投资,以及员工入职等情况。但这并不是说,存在不确定性,大数据就不能为我们提供帮助了。请不要将减少不确定性和消除不确定性混为一谈。大数据能够帮助我们消除不确定性的这一天还没有到来,可能这一天永远也不会到来。对海量非结构性数据进行分析或许能够帮助公司更好的理解客户的情绪。但是请不要误认为大数据能够为我们排除所有的可能性。生命的无常和业务的起伏将会破坏我们制订出的完美计划。
大数据和数据科学的定义在今后几年也许仍然不会确定下来,但是可以肯定的是,人们在2013年消费的数据量超过了2012年所消费的数据量。许多公司已经认识到了大数据的重要性,拒绝大数据可能将会导致公司在竞争中被淘汰出局。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27