
本人用到了spss重要功能总结
一、SPSS篇
(1)用spss剔除异常值
异常值:一组观测值中与平均值的偏差超过两倍标准差的测定值。
一、analyze >> descriptive statistics >>descriptives>> 选择变量(列)到右边的框里>>点选save standardized values as variables >>选择ok
二、在data里选中select cases,之后选择if相关,点按钮设置,进入后输入-2<=变量&变量<=2,continue,之后Unselected casees are filtered 或者deleted,然后OK
(2)相关性分析
指标:相关性系数和p值。sig即p值,代表假设检验中的显著性,通常如果sig<0.05,
拒绝虚无假设(原假设),接受备择假设,反之则无充分理由拒绝虚无假设
对于相关分析,通常sig<0.05就是研究者想看到的结果,因为这意味着相关系数有统计 学意义,变量间的确存在相关
a.Spearson相关:计算相关系数并作显著性检验,适用于两列变量都为正态分布的连续
变量或等间距测度的变量
b.kendall tau-b等级相关 计算相关系数并作显著性检验,对数据分布没有严格要求,
适用于检验等级变量之间的关联程度(秩相关)
c.spearman 等级相关 计算相关系数并做显著性检验,对数据分布没有严格要求,适用
于等级变量或者等级变量不满足正态分布的情况。
对于非等间距测度的连续变量,因为分布不明可以使用等级相关分析,也可以使用
Pearson 相关分析,
对于完全等级的离散变量,必须使用等级相关分析相关性
当资料不服从双变量正态分布或总体分布型未知,或原始数据是用等级表示时,宜用
Spearman 或Kendall相关
一般情况下我们都某人数据服从正态分布,采用pearson相关系数
偏相关:偏相关分析要考虑除却分析的变量之外是否有其它变量影响到这两个变量。(譬如,分析身高和短跑成绩的相关性,因为肺活量也影响到了身高和短跑成绩,所以需要剔除这个变量的影响)
距离相关分析:计算个案之间距离相似性和相异性
(1)回归分析
线性回归、非线性回归、分类回归。线性回归的定义:是基于最小二乘法原理产生的古典统计假设下的最优线性无偏估计。是研究一个或多个自变量与一个因变量之间是否存在某种线性关系的统计学方法。
在统计量选项卡中一般勾选估计、模型拟合度、共线性诊断和DW检验统计量。
一般以容忍度、方差膨胀因子(VIF,容忍度的倒数)作为共线性诊断指标。一般来说,容忍度的值介于0和1之间,如值太小,说明这个自变量与其它自变量间存在共线性问题;VIF值越大,则共线性问题越明显,一般以小于10为判断依据(Neter et al.,1985)。DW值用来检验回归分析中的残差项是否存在自相关现象,DW值的取值介于0和4之间:残差一阶正相关时,DW≈0;残差一阶负相关时,DW≈4;残差独立时,DW≈2。分析结果(如表5.3与表5.4)显示,各变量的VIF都远小于10,DW值也符合要求,说明各个自变量之间不存在共线性问题。
分析结果解释:首先看模型汇总表的R方,这个值位于0和1之间,表示你的方程能解释你的模型的百分之多少,越接近1越好。然后看方差分析表,第一行的回归对应的最后边的P值表征这个方程是不是可信(小于0.05则可信)。然后再看系数表,这个表里的P值会告诉你每个自变量在方程里是否可信,同时表里会展示每个自变量在方程中的系数,有非标准化系数(主要看这个)和标准化系数(你的数据标准化以后算出的系数)。P-P图上的每个空心圆都要尽量穿在那个线上边,圆心越靠近那个线越好。
最小二乘法:
(1)描述统计、频数分析
频率:各个变量值的分布频率及描述性统计量。
描述:均值,标准差,方差,范围,峰度(峰度是用于衡量分布的集中程度或分布曲线的尖峭程度的指标),偏度(偏度是用于衡量分布的不对称程度或偏斜程度的指标)。
探索:因变量列表是将列表中的变量作为探索分析中的目标变量,一般为连续性变量或者是比例变量。因子列表是目标变量的分组变量,对所需分析的目标变量进行分组表示,属性一般为字符型或者是数字型。
P-P图:检验数据服从的分布情况。
Q-Q图:检验数据服从的分布情况。
交叉率:交叉表分析主要用来检验两个变量之间是否存在关系,或者说是否独立,其零假设为两个变量之间没有关系。
比率:计算两个变量相对比的统计量特征。(作除法;直接对比)
P-P图是根据变量的累积比例与指定分布的累积比例之间的关系所绘制的图形。通过P-P图可以检验数据是否符合指定的分布。当数据符合指定分布时,P-P图中各点近似呈一条直线。
(1)参数与非参数检验
参数检验的使用条件是被检验的样本总体服从正态分布,而非参数检验使用条件自然就是总体不服从或不确定是否服从正态分布。
参数检验parameter test,对参数平均值、方差进行的统计检验,其运用范围有当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。这类问题往往用参数检验来进行统计推断。它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。
参数检验:
比较常见的单样本非参数检验包括游程检验和单样本K-S检验。
游程检验:
它通常用于检测两个不同的观测值出现的次序是否具有随机性。我们选择分析——非参数检验——旧对话框——游程,在主面板的检验变量列表里选入我们的0,1变量列。选项卡里边选择描述性,其他默认。割点可以全选。输出结果看p值就可以了。
单样本K-S检验:
这个就比较重要了。这个检验的目的在于观测样本的分布。只要我们想做相关和回归,那我们就最好用K-S检验来检查一下样本的分布。毕竟pearson相关系数有效的一个重要条件就是样本服从正态分布。
我们选择分析——非参数检验——旧对话框——1样本K-S,在主对话框的检验变量列表里边选入我们想检验分布的变量(比如一群病号的血细胞数),选项卡里勾选描述性和四分位数,其他默认。在检验分布的下边有四个供勾选的框框,这个要注意一下,常规指的就是正态分布,相等则是指均匀分布,勾选你想检验的分布(一般是正态分布)。确定以后就可以看结果了。
多个独立非参数检验:
K-W检验:用来判断各样本分别代表的总体是否一致。
两相关样本非参数检验:
wilcoxon检验:用来检验两个变量的分布是否有差异。
多个相关样本非参数检验:
Friedman检验:用于检验多个相关样本是否来自同一整体,是wilcoxon的扩展。
Kendallw检验:检验样本一致性的好坏。
(1)SPSS做预测
当我们在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!
要知道数据的起点和时间间隔。
PASW Statistics提供了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA
指数平滑法
指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时体现上述两种特征。创建最适当的指数平滑模型包括确定模型类型(此模型是否需要包含趋势和/或季节),然后获取最适合选定模型的参数。
为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点:
• 此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝?
• 此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在?
(解释清楚回归分析和相关性分析中的参数检验)
(6)spss做分类
两步聚类、K-均值、系统聚类、决策树、k-近邻
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15