京公网安备 11010802034615号
经营许可证编号:京B2-20210330
技术爆炸,一日千里,小到网络搜索,大到人工智能,数据分析已渗透在社会的方方面面。2017年,国内有两份关于大数据人才的专业报告很好的反映了数据人才的稀缺性与重要性。《大数据人才报告》中显示,目前全国的大数据人仅46万,未来3-5年缺口将高达150万。《2017中国大数据及AI人才发展报告》中体现了大数据人才企业招聘人数猛增6倍,平均固定年薪达38万。在国外,美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期重要报告中也体现,仅约23%的毕业生掌握了数据科学与数据分析技能,而69%的雇主希望求职者具备数据分析技能。2018年,随着AI与区块链泡沫的出现,大数据技术显得更为靠谱,更接地气,更加务实。人人都应具备数据分析能力,现入行数据分析职业为时不晚、恰逢其时。

(图片来源:《2017中国大数据及AI人才发展报告》)
人才稀缺,面对激烈的竞争环境,企业对数据人才的要求也更为苛刻。《CDA数据分析师人才标准大纲》自2013年以来,从1.0到2.0版本,经历了企业的实践与市场的检验,为步入数据分析领域的新人和不断成长晋升的业内人士,做着标杆性的引导与认可。2018年,《CDA数据分析师人才标准大纲》经过CDA Institute、CDMS与经管之家CDA数据分析研究院反复研究与打磨,经过来自业界和学界的专家学者组成的CDA教研团队与命题委员会逐条审核与修改,更新为了3.0版本。最新(第八届)CDA认证大纲更加贴近商业数据分析应用,更加强调理论与实践的结合,满足了时代对新型数据分析人才的要求,让CDA持证者在企业工作与职业发展中更具竞争力。

CDA考试大纲是CDA命题组基于CDA数据分析师等级认证标准而设定的一套科学、详细、系统的考试纲要。考纲规定并明确了CDA数据分析师认证考试的具体范围、内容和知识点。本次3.0大纲调整了部分知识模块的比例,在领悟、熟知、应用三个层次细化了知识点的说明,特别是在应用部分增加了考生对于具体业务场景的运用要求。在LEVEL 1数据建模分析模块的聚类分析部分,结合了客户画像、客户细分、商品聚类、离群值检验(欺诈、反洗钱)等业务运用场景。在对应分析部分增加了客户满意度分析、市场绩效及产品细分等场景下的运用。另外还强调了考生解读数据的能力和撰写数据报告的能力等等。详细更新点可见第八届CDA数据分析师认证考试大纲内容。
CDA认证符合实际、贴近前沿、品质规范。越来越多的CDA学员及持证人走向世界各地,企业招募人才供不应求,CDA数据分析师品牌得到了来自学界与实业界的教授、专家、从业者的口碑相传,国内外各行业的企业、单位、机构的接纳认可。随着德勤(Deloitte)将CDA认证纳入员工手册,作为员工技能的要求之一;随着中国电信、苏宁等企业引进CDA人才参考标准,在企业内部进行CDA认证考试。CDA认证不断受到市场的考验,成为了大数据及数据分析领域通用人才专业名词,逐步走向行业标杆。
CDA数据分析师持证人大多就业于各行业数据分析专业岗位,如:业务数据分析师,数据挖掘工程师,建模分析师,大数据分析师,大数据工程师,首席数据官等职位。就业企业包括中国银行、IBM、联想、移动、华为、尼尔森、市级政府部门等数千家企业,CDA持证人在企业专业数据分析岗位上得到了普遍认可。
未来是大数据、人工智能、区块链等高新技术不断发展的年代,企业对于大数据及数据分析人才的需求和要求会越来越高,CDA将与时俱进,不断迭代,不断引进前沿技术,丰富教学资源,更新体系标准,极力推动大数据及数据分析的人才建设和发展。相信,CDA在数据分析人才教育领域的努力,会让更多人了解数据分析,学会数据分析;让更多业内人士能在DT时代成为更具竞争力的新型抢手人才;让企业更快速高效的找到的更适合自身需要的数据分析人才。CDA数据分析师的前景将是一片蓝海。
第八届CDA数据分析师认证考试报名已开放!
大纲下载地址:https://www.cda.cn/view/3.html(页面中部)
CDA认证报名通道:http://exam.cda.cn/
加入CDA认证考试交流群!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01