
技术爆炸,一日千里,小到网络搜索,大到人工智能,数据分析已渗透在社会的方方面面。2017年,国内有两份关于大数据人才的专业报告很好的反映了数据人才的稀缺性与重要性。《大数据人才报告》中显示,目前全国的大数据人仅46万,未来3-5年缺口将高达150万。《2017中国大数据及AI人才发展报告》中体现了大数据人才企业招聘人数猛增6倍,平均固定年薪达38万。在国外,美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期重要报告中也体现,仅约23%的毕业生掌握了数据科学与数据分析技能,而69%的雇主希望求职者具备数据分析技能。2018年,随着AI与区块链泡沫的出现,大数据技术显得更为靠谱,更接地气,更加务实。人人都应具备数据分析能力,现入行数据分析职业为时不晚、恰逢其时。
(图片来源:《2017中国大数据及AI人才发展报告》)
人才稀缺,面对激烈的竞争环境,企业对数据人才的要求也更为苛刻。《CDA数据分析师人才标准大纲》自2013年以来,从1.0到2.0版本,经历了企业的实践与市场的检验,为步入数据分析领域的新人和不断成长晋升的业内人士,做着标杆性的引导与认可。2018年,《CDA数据分析师人才标准大纲》经过CDA Institute、CDMS与经管之家CDA数据分析研究院反复研究与打磨,经过来自业界和学界的专家学者组成的CDA教研团队与命题委员会逐条审核与修改,更新为了3.0版本。最新(第八届)CDA认证大纲更加贴近商业数据分析应用,更加强调理论与实践的结合,满足了时代对新型数据分析人才的要求,让CDA持证者在企业工作与职业发展中更具竞争力。
CDA考试大纲是CDA命题组基于CDA数据分析师等级认证标准而设定的一套科学、详细、系统的考试纲要。考纲规定并明确了CDA数据分析师认证考试的具体范围、内容和知识点。本次3.0大纲调整了部分知识模块的比例,在领悟、熟知、应用三个层次细化了知识点的说明,特别是在应用部分增加了考生对于具体业务场景的运用要求。在LEVEL 1数据建模分析模块的聚类分析部分,结合了客户画像、客户细分、商品聚类、离群值检验(欺诈、反洗钱)等业务运用场景。在对应分析部分增加了客户满意度分析、市场绩效及产品细分等场景下的运用。另外还强调了考生解读数据的能力和撰写数据报告的能力等等。详细更新点可见第八届CDA数据分析师认证考试大纲内容。
CDA认证符合实际、贴近前沿、品质规范。越来越多的CDA学员及持证人走向世界各地,企业招募人才供不应求,CDA数据分析师品牌得到了来自学界与实业界的教授、专家、从业者的口碑相传,国内外各行业的企业、单位、机构的接纳认可。随着德勤(Deloitte)将CDA认证纳入员工手册,作为员工技能的要求之一;随着中国电信、苏宁等企业引进CDA人才参考标准,在企业内部进行CDA认证考试。CDA认证不断受到市场的考验,成为了大数据及数据分析领域通用人才专业名词,逐步走向行业标杆。
CDA数据分析师持证人大多就业于各行业数据分析专业岗位,如:业务数据分析师,数据挖掘工程师,建模分析师,大数据分析师,大数据工程师,首席数据官等职位。就业企业包括中国银行、IBM、联想、移动、华为、尼尔森、市级政府部门等数千家企业,CDA持证人在企业专业数据分析岗位上得到了普遍认可。
未来是大数据、人工智能、区块链等高新技术不断发展的年代,企业对于大数据及数据分析人才的需求和要求会越来越高,CDA将与时俱进,不断迭代,不断引进前沿技术,丰富教学资源,更新体系标准,极力推动大数据及数据分析的人才建设和发展。相信,CDA在数据分析人才教育领域的努力,会让更多人了解数据分析,学会数据分析;让更多业内人士能在DT时代成为更具竞争力的新型抢手人才;让企业更快速高效的找到的更适合自身需要的数据分析人才。CDA数据分析师的前景将是一片蓝海。
第八届CDA数据分析师认证考试报名已开放!
大纲下载地址:https://www.cda.cn/view/3.html(页面中部)
CDA认证报名通道:http://exam.cda.cn/
加入CDA认证考试交流群!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04