
python脚本实现分析dns日志并对受访域名排行
前段时间有个需求是要求查一段时间的dns上的域名访问次数排行(top100),没办法,只好慢慢的去解析dns日志呗,正好学习了python,拿来练练手。
1.原始数据分析:
首先看下原始数据文件,即dns日志内容,下面是抽取的几条有代表性的日志,2×8.2×1.2x.1×5 这种中间的x是相应的数字被我抹去了。
13-08-30 03:11:34,229 INFO : queries: – |1×3.2×8.2x.2×8|p19.qhimg.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |8061|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.x.9x|shu.taobao.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |59034|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.2×7.1×2|cncjn.phn.live.baofeng.net|default|2×8.2×1.2x.17x;|default;|A|success|+|—w— qr aa rd ra |3004|
可以看出中间的日志采用的是| 分割的,shu.taobao.com 即为我们想要的数据域名,至于域名访问次数统计,则每个域名的一条记录算一次访问。由此我们可以确定一下两点:
a)采用| 作为分割符
b)第二个字段domain为目标数据,我们用作键值,即字典的key
c)domain[key]存储相应域名的访问次数
2.脚本构思:
a)我们的dns日志都是隔一段时间自动切割、压缩为gz文件,因此首先必须采用gzip.open去打开gz文件,这里需要导入gz库。
b)要求查找的是一段时间的域名排行,所以必须有得过滤一段时间,这里我采用了正则的方式去过滤,so导入re正则库。
c)排序,必须对结果进行排序,然后输出topXX的结果,由于是采用字典保存的,而字典是乱想的,所以必须有合适的办法去排序,字典的iteritems正好适用。
3.脚本编写:
明白了大致要点,脚本写起来就很easy了。
代码如下:
稍微说下脚本内容,queries.log.CMN-CQ.20130830031330.gz 为具体的一个目标文件,脚本主要是采用字典存储,以domain字段作为key,domain[key]存储访问次数。
稍后调用字典的iteritems 方法生产迭代器进行排序,最后输入top100的域名。
最后的raw_input(“enter a word to finish”) 是因为我在win7下测试的,默认执行完就一闪而过了,加入这行纯碎是为了观察结果,linux下可以删去。
这里稍微别扭的是时间的过滤采用的是正则去过滤的,所以要求输入必须是正则的方式,这点麻烦。
3.执行
说了大半天了,还是先跑下看看效果吧。
可以看出正常输出了top20的域名。
4.总结:
大致实现了相应的要求,只是很多的文件处理的不大好。例如采用正规去过滤时间段,在数据量很大的情况下会对性能有影响。同时感谢同事,最后的字典的排序方法我是抄他的,感谢个~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01