京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python脚本实现分析dns日志并对受访域名排行
前段时间有个需求是要求查一段时间的dns上的域名访问次数排行(top100),没办法,只好慢慢的去解析dns日志呗,正好学习了python,拿来练练手。
1.原始数据分析:
首先看下原始数据文件,即dns日志内容,下面是抽取的几条有代表性的日志,2×8.2×1.2x.1×5 这种中间的x是相应的数字被我抹去了。
13-08-30 03:11:34,229 INFO : queries: – |1×3.2×8.2x.2×8|p19.qhimg.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |8061|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.x.9x|shu.taobao.com|default|2×8.2×1.2x.1×5;|default;|A|success|+|—w— qr aa rd ra |59034|
13-08-30 03:11:34,238 INFO : queries: – |1×3.2×8.2×7.1×2|cncjn.phn.live.baofeng.net|default|2×8.2×1.2x.17x;|default;|A|success|+|—w— qr aa rd ra |3004|
可以看出中间的日志采用的是| 分割的,shu.taobao.com 即为我们想要的数据域名,至于域名访问次数统计,则每个域名的一条记录算一次访问。由此我们可以确定一下两点:
a)采用| 作为分割符
b)第二个字段domain为目标数据,我们用作键值,即字典的key
c)domain[key]存储相应域名的访问次数
2.脚本构思:
a)我们的dns日志都是隔一段时间自动切割、压缩为gz文件,因此首先必须采用gzip.open去打开gz文件,这里需要导入gz库。
b)要求查找的是一段时间的域名排行,所以必须有得过滤一段时间,这里我采用了正则的方式去过滤,so导入re正则库。
c)排序,必须对结果进行排序,然后输出topXX的结果,由于是采用字典保存的,而字典是乱想的,所以必须有合适的办法去排序,字典的iteritems正好适用。
3.脚本编写:
明白了大致要点,脚本写起来就很easy了。
代码如下:
稍微说下脚本内容,queries.log.CMN-CQ.20130830031330.gz 为具体的一个目标文件,脚本主要是采用字典存储,以domain字段作为key,domain[key]存储访问次数。
稍后调用字典的iteritems 方法生产迭代器进行排序,最后输入top100的域名。
最后的raw_input(“enter a word to finish”) 是因为我在win7下测试的,默认执行完就一闪而过了,加入这行纯碎是为了观察结果,linux下可以删去。
这里稍微别扭的是时间的过滤采用的是正则去过滤的,所以要求输入必须是正则的方式,这点麻烦。
3.执行
说了大半天了,还是先跑下看看效果吧。
可以看出正常输出了top20的域名。
4.总结:
大致实现了相应的要求,只是很多的文件处理的不大好。例如采用正规去过滤时间段,在数据量很大的情况下会对性能有影响。同时感谢同事,最后的字典的排序方法我是抄他的,感谢个~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01