京公网安备 11010802034615号
经营许可证编号:京B2-20210330
改善企业数据管理流程七个建议
为了对信息进行更好的监督和管理,从而改善业务运营效率,许多企业都开始投资数据治理项目。其策略和流程设计用来在整个企业中产生更为精确和一致的数据,数据专员(Data Steward)需要确保把它从理论转化为实践。很大程度上,数据治理策略的成功就要取决于相关数据专员的努力。在某种程度上,建立一个符合企业现有架构的数据治理管理架构和运营模型是很重要的。这包括数据管理的各个元素。听上去很简单,但实际操作却困难重重。
当要上马一个项目,仓促做出可能无法达到预期目标的决定时,数据治理的问题就会显现出来。举个例子,如果一家公司在定义好自己应该做什么之前,就选定一个数据管理池会导致严重混乱。另外,那些要仓促证明已经迅速取得进展的企业最让数据专员头疼,因为他们要进行元数据调查以及许多毫无意义的工作。
如何有效地构建和管理一个数据管理团队,使其可以保持协调的治理活动?本文就将给出七条相关的建议:
职位正规化。在要求个人承担数据专员的角色之前,要确保有一个正式的职责划分;确定这个职位所需要的技能;衡量其表现的指标;如果数据专员不是一个专门职位的话,你还要对如何与现有工作相结合的细节进行敲定。
在管理角色上进行细粒度划分。数据专员其实包含了很多角色,例如元数据管理员和运营数据管理员。最好是能清晰的描述怎样区分这些角色,员工如何协同工作以支持数据管理流程。
建立数据的业务所有权。数据专员可能需要负责与数据治理策略保持一致的工作,但是那并不意味着他们所要负责的是数据本身。所有权和问责制必须划分给适当的业务单元或部门。
与业务保持一致。作为数据治理项目的一部分,数据可用性预期是在期望业务改善的背景下形成框架的,例如增加收入,降低成本,减少风险以及提高生产力。但大多数IT和数据管理从业者更熟悉数据管理机制而不是业务流程。如果数据专员并非来自于业务领域本身,那么就要有关键业务领域的专家来帮助他们识别数据问题并区分任务的优先级。
建立奖励机制。与那些有明显成果可以交付的典型项目不同,数据管理的本质是确保能应对数据偶然事件的发生,而成果也许并不是十分直观的。因此要为你的数据专员建立一套奖励机制,对他们进行认可和奖励。
正确的人干正确的事。由于数据专员角色尚在发展中,那么登广告寻找拥有多年经验的人可能不太现实。而且在很多公司中,数据管理并不是全职工作。因此,你可能需要在内部网罗具有管理潜能的人员。考虑哪项数据管理技能才是必需的,寻找有价值和良好沟通能力的员工,他们在寻求最佳实践上充满自信,并且能适应不断改变的理念。
给数据专员提供合适的工具。尽管数据管理从根本上说是一个程序问题,但依然有相应工具是可以支持,包括数据质量评估,数据验证,以及数据事件报告和管理软件,甚至可能包括数据质量和数据管理记分卡应用。
所有这些步骤有一个共同的主题:在设计数据治理和管理项目之前,需要做出哪些合理的努力,从而使其正常运转。一旦完成,招聘合适的人,给他们明确定义角色,使他们与业务单元保持同步并辅以绩效激励措施,这样有助于开启一个可持续的数据管理流程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01