京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中多线程的创建及基本调用方法
1. 多线程的作用
简而言之,多线程是并行处理相互独立的子任务,从而大幅度提高整个任务的效率。
2. Python中的多线程相关模块和方法
Python中提供几个用于多线程编程的模块,包括thread,threading和Queue等
thread模块提供了基本的线程和锁的支持,除产生线程外,也提供基本的同步数据结构锁对象,其中包括:
start_new_thread(function, args kwargs=None) 产生一个新的线程来运行给定函数
allocate_lock() 分配一个LockType类型的锁对象
exit() 让线程退出
acquire(wait=None) 尝试获取锁对象
locked() 如果获取了锁对象返回TRUE,否则返回FALSE
release() 释放锁
threading提供了更高级别,功能更强的线程管理功能
Thread类 表示一个线程的执行的对象
Lock 锁原语对象
RLock 可重入锁对象,使单线程可以再次获得已经获取锁
queue模块允许用户创建一个可以用于多个线程之间共享数据的队列数据结构
可用于进程间的通讯,让各个线程之间共享数据
模块函数queue(size) 创建一个大小为size的Queue对象
queue对象函数 qsize() 返回队列大小
empty() 队列为空返回True,否则返回False
put(item, block=0) 把ITEM放到队列中,block不为0,函数会一直阻塞到队列中
get(block=0) 从队列中取一个对象,若果给block,函数会一直阻塞到队列中有对象为止
3.示例
目前Python的lib中对多线程编程提供两种启动方法,一种是比较基本的thread模块中start_new_thread方法,在线程中运行一个函数, 另一种是使用集成threading模块的线程对象Thread类。
目前所用到的,是旧版本中调用thread模块中的start_new_thread()函数来产生新的线程
相比而言,thread.start_new_thread(function,(args[,kwargs]))实现机制其实与C更为类似,其中function参数是将要调用的线程函数;(args[,kwargs])是将传递给待创建线程函数的参数组成的元组类型,其中kwargs是可选的参数。新创建的线程结束一般依靠线程函数的执行结束自动退出,或者在线程函数中调用thread.exit()抛出SystemExit
exception,达到线程退出的目的。
print "=======================thread.start_new_thread启动线程============="
import thread
#Python的线程sleep方法并不是在thread模块中,反而是在time模块下
import time
def inthread(no,interval):
count=0
while count<10:
print "Thread-%d,休眠间隔:%d,current Time:%s"%(no,interval,time.ctime())
#使当前线程休眠指定时间,interval为浮点型的秒数,不同于Java中的整形毫秒数
time.sleep(interval)
#Python不像大多数高级语言一样支持++操作符,只能用+=实现
count+=1
else:
print "Thread-%d is over"%no
#可以等待线程被PVM回收,或主动调用exit或exit_thread方法结束线程
thread.exit_thread()
#使用start_new_thread函数可以简单的启动一个线程,第一个参数指定线程中执行的函数,第二个参数为元组型的传递给指定函数的参数值
thread.start_new_thread(inthread,(1,2))
#线程执行时必须添加这一行,并且sleep的时间必须足够使线程结束,如本例
#如果休眠时间改为20,将可能会抛出异常
time.sleep(30)
'''
使用这种方法启动线程时,有可能出现异常
Unhandled exception in thread started by
Error in sys.excepthook:
Original exception was:
解决:启动线程之后,须确保主线程等待所有子线程返回结果后再退出,如果主线程比子线程早结束,无论其子线程是否是后台线程,都将会中断,抛出这个异常
若没有响应阻塞等待,为避免主线程提前退出,必须调用time.sleep使主线程休眠足够长的时间,另外也可以采用加锁机制来避免类似情况,通过在启动线程的时候,给每个线程都加了一把锁,直到线程运行介绍,再释放这个锁。同时在Python的main线程中用一个while循环来不停的判断每个线程锁已释放。
import thread;
from time import sleep,ctime;
from random import choice
#The first param means the thread number
#The second param means how long it sleep
#The third param means the Lock
def loop(nloop,sec,lock):
print "Thread ",nloop," start and will sleep ",sec;
sleep(sec);
print "Thread ",nloop," end ",sec;
lock.release();
def main():
seconds=[4,2];
locks=[];
for i in range(len(seconds)) :
lock=thread.allocate_lock();
lock.acquire();
locks.append(lock);
print "main Thread begins:",ctime();
for i,lock in enumerate(locks):
thread.start_new_thread(loop,(i,choice(seconds),lock));
for lock in locks :
while lock.locked() :
pass;
print "main Thread ends:",ctime();
if __name__=="__main__" :
main();
很多介绍说在新python版本中推荐使用Threading模块,目前暂没有应用到。。。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21