
朴素贝叶斯分类器也是一类基于概率的分类器,它源于贝叶斯理论,假设样本属性之间相互独立。
操作
利用朴素贝叶斯分类器对churn数据集进行分类:
导入e1071库,使用naiveBayes函数构建分类器
library(e1071)
classifier = naiveBayes(trainset[,!names(trainset) %in% c("churn")],trainset$churn)
classifier
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = trainset[, !names(trainset) %in% c("churn")],
y = trainset$churn)
A-priori probabilities:
trainset$churn
yes no
0.1477322 0.8522678
Conditional probabilities:
international_plan
trainset$churn 0 1
yes 0.70467836 0.29532164
no 0.93512418 0.06487582
voice_mail_plan
trainset$churn 0 1
yes 0.8333333 0.1666667
no 0.7045109 0.2954891
number_vmail_messages
trainset$churn [,1] [,2]
yes 5.099415 11.80618
no 8.674607 14.03670
total_day_minutes
trainset$churn [,1] [,2]
yes 205.8877 69.10294
no 174.2555 50.16357
total_day_calls
trainset$churn [,1] [,2]
yes 101.0234 22.02903
no 100.5509 19.67038
total_day_charge
trainset$churn [,1] [,2]
yes 35.00143 11.747587
no 29.62402 8.527769
total_eve_minutes
trainset$churn [,1] [,2]
yes 213.7269 51.92206
no 199.6197 50.53780
total_eve_calls
trainset$churn [,1] [,2]
yes 101.4123 19.48658
no 99.9478 20.16161
total_eve_charge
trainset$churn [,1] [,2]
yes 18.16702 4.413058
no 16.96789 4.295730
total_night_minutes
trainset$churn [,1] [,2]
yes 205.4640 47.11434
no 201.4184 51.34049
total_night_calls
trainset$churn [,1] [,2]
yes 100.2573 20.32690
no 100.0193 19.68094
total_night_charge
trainset$churn [,1] [,2]
yes 9.245994 2.12038
no 9.063882 2.31040
total_intl_minutes
trainset$churn [,1] [,2]
yes 10.73684 2.752784
no 10.15119 2.819086
total_intl_calls
trainset$churn [,1] [,2]
yes 4.134503 2.487395
no 4.514445 2.394724
total_intl_charge
trainset$churn [,1] [,2]
yes 2.899386 0.7432760
no 2.741343 0.7611755
number_customer_service_calls
trainset$churn [,1] [,2]
yes 2.204678 1.808803
no 1.441460 1.150114
生成测试数据集分类表:
bayes.table = table(predict(classifier,testset[,!names(testset) %in% c("churn")]),testset$churn)
bayes.table
yes no
yes 68 45
no 73 832
利用分类表生成混淆矩阵:
confusionMatrix(bayes.table)
Confusion Matrix and Statistics
yes no
yes 68 45
no 73 832
Accuracy : 0.8841
95% CI : (0.8628, 0.9031)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 0.01880
Kappa : 0.4701
Mcnemar's Test P-Value : 0.01294
Sensitivity : 0.4823
Specificity : 0.9487
Pos Pred Value : 0.6018
Neg Pred Value : 0.9193
Prevalence : 0.1385
Detection Rate : 0.0668
Detection Prevalence : 0.1110
Balanced Accuracy : 0.7155
'Positive' Class : yes
说明
朴素贝叶斯算法假设特征变量都是条件独立,即预测变量(x)对分类结果(c)的影响与其它变量对c的影响是相互独立的。
先验概率P(ωj)是由先验知识而获得的。
后验概率P(ωj|x),即假设特征值x已知的条件下类别属于ωj的概率。朴素贝叶斯算法的优势在于其简单性,应用也比较直接,适合用训练数据集规格较小,有可能存在某些缺失与噪音的情况,预测值的概率计算比较简单,算法不足之处在于它假定的所有的特征变量之间相互独立,并且同等重要,这个前提在现实世界中很难成立。
本节使用e1071包中的朴素贝叶斯分类器构成分类模型,首先,我们假定在朴素贝叶斯函数中调用的所有变量(包括churn类标号)都是输入函数的第一输入参数,churn类标号为算法的第二输入参数。接下来,将分类模型指派给不同的变量分类。再输出分类器的相关信息,包括函数调用、先验概率以及条件概率等。我们也可以使用predict函数预测结果,并使用table函数得到测试数据集的分类表,最后,生成混淆矩阵计算分类模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29