京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朴素贝叶斯分类器也是一类基于概率的分类器,它源于贝叶斯理论,假设样本属性之间相互独立。
操作
利用朴素贝叶斯分类器对churn数据集进行分类:
导入e1071库,使用naiveBayes函数构建分类器
library(e1071)
classifier = naiveBayes(trainset[,!names(trainset) %in% c("churn")],trainset$churn)
classifier
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = trainset[, !names(trainset) %in% c("churn")],
y = trainset$churn)
A-priori probabilities:
trainset$churn
yes no
0.1477322 0.8522678
Conditional probabilities:
international_plan
trainset$churn 0 1
yes 0.70467836 0.29532164
no 0.93512418 0.06487582
voice_mail_plan
trainset$churn 0 1
yes 0.8333333 0.1666667
no 0.7045109 0.2954891
number_vmail_messages
trainset$churn [,1] [,2]
yes 5.099415 11.80618
no 8.674607 14.03670
total_day_minutes
trainset$churn [,1] [,2]
yes 205.8877 69.10294
no 174.2555 50.16357
total_day_calls
trainset$churn [,1] [,2]
yes 101.0234 22.02903
no 100.5509 19.67038
total_day_charge
trainset$churn [,1] [,2]
yes 35.00143 11.747587
no 29.62402 8.527769
total_eve_minutes
trainset$churn [,1] [,2]
yes 213.7269 51.92206
no 199.6197 50.53780
total_eve_calls
trainset$churn [,1] [,2]
yes 101.4123 19.48658
no 99.9478 20.16161
total_eve_charge
trainset$churn [,1] [,2]
yes 18.16702 4.413058
no 16.96789 4.295730
total_night_minutes
trainset$churn [,1] [,2]
yes 205.4640 47.11434
no 201.4184 51.34049
total_night_calls
trainset$churn [,1] [,2]
yes 100.2573 20.32690
no 100.0193 19.68094
total_night_charge
trainset$churn [,1] [,2]
yes 9.245994 2.12038
no 9.063882 2.31040
total_intl_minutes
trainset$churn [,1] [,2]
yes 10.73684 2.752784
no 10.15119 2.819086
total_intl_calls
trainset$churn [,1] [,2]
yes 4.134503 2.487395
no 4.514445 2.394724
total_intl_charge
trainset$churn [,1] [,2]
yes 2.899386 0.7432760
no 2.741343 0.7611755
number_customer_service_calls
trainset$churn [,1] [,2]
yes 2.204678 1.808803
no 1.441460 1.150114
生成测试数据集分类表:
bayes.table = table(predict(classifier,testset[,!names(testset) %in% c("churn")]),testset$churn)
bayes.table
yes no
yes 68 45
no 73 832
利用分类表生成混淆矩阵:
confusionMatrix(bayes.table)
Confusion Matrix and Statistics
yes no
yes 68 45
no 73 832
Accuracy : 0.8841
95% CI : (0.8628, 0.9031)
No Information Rate : 0.8615
P-Value [Acc > NIR] : 0.01880
Kappa : 0.4701
Mcnemar's Test P-Value : 0.01294
Sensitivity : 0.4823
Specificity : 0.9487
Pos Pred Value : 0.6018
Neg Pred Value : 0.9193
Prevalence : 0.1385
Detection Rate : 0.0668
Detection Prevalence : 0.1110
Balanced Accuracy : 0.7155
'Positive' Class : yes
说明
朴素贝叶斯算法假设特征变量都是条件独立,即预测变量(x)对分类结果(c)的影响与其它变量对c的影响是相互独立的。
先验概率P(ωj)是由先验知识而获得的。
后验概率P(ωj|x),即假设特征值x已知的条件下类别属于ωj的概率。朴素贝叶斯算法的优势在于其简单性,应用也比较直接,适合用训练数据集规格较小,有可能存在某些缺失与噪音的情况,预测值的概率计算比较简单,算法不足之处在于它假定的所有的特征变量之间相互独立,并且同等重要,这个前提在现实世界中很难成立。
本节使用e1071包中的朴素贝叶斯分类器构成分类模型,首先,我们假定在朴素贝叶斯函数中调用的所有变量(包括churn类标号)都是输入函数的第一输入参数,churn类标号为算法的第二输入参数。接下来,将分类模型指派给不同的变量分类。再输出分类器的相关信息,包括函数调用、先验概率以及条件概率等。我们也可以使用predict函数预测结果,并使用table函数得到测试数据集的分类表,最后,生成混淆矩阵计算分类模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15