
回归诊断主要内容
(1).误差项是否满足独立性,等方差性与正态
(2).选择线性模型是否合适
(3).是否存在异常样本
(4).回归分析是否对某个样本的依赖过重,也就是模型是否具有稳定性
(5).自变量之间是否存在高度相关,是否有多重共线性现象存在
通过了t检验与F检验,但是做为回归方程还是有问题
#举例说明,利用anscombe数据
## 调取数据集
data(anscombe)
## 分别调取四组数据做回归并输出回归系数等值
ff <- y ~ x
for(i in 1:4) {
ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
assign(paste("lm.",i,sep=""), lmi<-lm(ff, data=anscombe))
}
GetCoef<-function(n) summary(get(n))$coef
lapply(objects(pat="lm\\.[1-4]$"), GetCoef)
[[1]]
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0000909 1.1247468 2.667348 0.025734051
x1 0.5000909 0.1179055 4.241455 0.002169629
[[2]]
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.000909 1.1253024 2.666758 0.025758941
x2 0.500000 0.1179637 4.238590 0.002178816
[[3]]
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0024545 1.1244812 2.670080 0.025619109
x3 0.4997273 0.1178777 4.239372 0.002176305
[[4]]
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017273 1.1239211 2.670763 0.025590425
x4 0.4999091 0.1178189 4.243028 0.002164602
从计算结果可以知道,Estimate, Std. Error, t value, Pr(>|t|)这几个值完全不同,并且通过检验,进一步发现R^2,F值,p值完全相同,方差完全相同。事实上这四组数据完全不同,全部用线性回归不合适。
## 绘图
op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma=c(0,0,2,0))
for(i in 1:4) {
ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
plot(ff, data =anscombe, col="red", pch=21,
bg="orange", cex=1.2, xlim=c(3,19), ylim=c(3,13))
abline(get(paste("lm.",i,sep="")), col="blue")
}
mtext("Anscombe's 4 Regression data sets",
outer = TRUE, cex=1.5)
par(op)
第1组数据适用于线性回归模型,第二组使用二次模型更加合理,第三组的一个点偏离于整体数据构成的回归直线,应该去掉。第四级做回归是不合理的,回归系只依赖一个点。在得到回归方程得到各种检验后,还要做相关的回归诊断。
残差检验
残差的检验是检验模型的误差是否满足正态性和方差齐性,最简单直观的方法是画出残差图。观察残差分布情况,作出散点图。
#20-60岁血压与年龄分析
## (1) 回归
rt<-read.table("d:/R-TT/book1/1_R/chap06/blood.dat", header=TRUE)
lm.sol<-lm(Y~X, data=rt); lm.sol
summary(lm.sol)
Call:
lm(formula = Y ~ X, data = rt)
Residuals:
Min 1Q Median 3Q Max
-16.4786 -5.7877 -0.0784 5.6117 19.7813
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.15693 3.99367 14.061 < 2e-16 ***
X 0.58003 0.09695 5.983 2.05e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.146 on 52 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3963
F-statistic: 35.79 on 1 and 52 DF, p-value: 2.05e-07
## (2) 残差图
pre<-fitted.values(lm.sol)
#fitted value 配适值;拟合值
res<-residuals(lm.sol)
#计算回归模型的残差
rst<-rstandard(lm.sol)
#计算回归模型标准化残差
par(mai=c(0.9, 0.9, 0.2, 0.1))
plot(pre, res, xlab="Fitted Values", ylab="Residuals")
savePlot("resid-1", type="eps")
plot(pre, rst, xlab="Fitted Values",
ylab="Standardized Residuals")
savePlot("resid-2", type="eps")
残差
标准差
## (3) 对残差作回归,利用残差绝对值与自变量(x)作回归,其程序如下:
rt$res<-res
lm.res<-lm(abs(res)~X, data=rt); lm.res
summary(lm.res)
Call:
lm(formula = abs(res) ~ X, data = rt)
Residuals:
Min 1Q Median 3Q Max
-9.7639 -2.7882 -0.1587 3.0757 10.0350
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.54948 2.18692 -0.709 0.48179
X 0.19817 0.05309 3.733 0.00047 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.461 on 52 degrees of freedom
Multiple R-squared: 0.2113, Adjusted R-squared: 0.1962
F-statistic: 13.93 on 1 and 52 DF, p-value: 0.0004705
si= -1.5495 + 0.1982x
## (4) 计算残差的标准差,利用方差(标准差的平方)的倒数作为样本点的权重,这样可以减少非齐性方差带来的影响
s<-lm.res$coefficients[1]+lm.res$coefficients[2]*rt$X
lm.weg<-lm(Y~X, data=rt, weights=1/s^2); lm.weg
summary(lm.weg)
Call:
lm(formula = Y ~ X, data = rt, weights = 1/s^2)
Weighted Residuals:
Min 1Q Median 3Q Max
-2.0230 -0.9939 -0.0327 0.9250 2.2008
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.56577 2.52092 22.042 < 2e-16 ***
X 0.59634 0.07924 7.526 7.19e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.213 on 52 degrees of freedom
Multiple R-squared: 0.5214, Adjusted R-squared: 0.5122
F-statistic: 56.64 on 1 and 52 DF, p-value: 7.187e-10
修正后的回归方程:Y = 55.5658 + 0.5963x
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15