在这次校园招聘的过程中,我学到了很多的东西,也纠正了我之前的算法至上的思想,尤其是面试百度的过程中,让我渐渐意识到机器学习不是唯有算法,机器学习是一个过程,这样的过程包括数据处理+模型训练,而数据处理又包括了特征提取,特征表示。模型训练中有训练的策略,训练的模型,算法相关等等的一套流程,一个好的预测模型与特征提取,特征表示的方法息息相关,而算法这是作用于特征数据集上的一种策略。
以上是我个人的一些观点,如有不同见解的人,也希望你们留言,大家一起探讨,一起进步。今天还是要来说说我看到的一个材料“An Introduction to Feature Selection”,主要是我对这篇文章的一个总结与我个人的一些认识。
1、相同点和不同点
特征选择和降维有着些许的相似点,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性(或者称为特征)的数目;但是两者所采用的方式方法却不同:降维的方法主要是通过属性间的关系,如组合不同的属性得新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。
2、降维的主要方法
Principal Component Analysis(主成分分析),详细见“简单易学的机器学习算法——主成分分析(PCA)”
Singular Value Decomposition(奇异值分解),详细见“简单易学的机器学习算法——SVD奇异值分解”
Sammon's Mapping(Sammon映射)
二、特征选择的目标
引用自吴军《数学之美》上的一句话:一个正确的数学模型应当在形式上是简单的。构造机器学习的模型的目的是希望能够从原始的特征数据集中学习出问题的结构与问题的本质,当然此时的挑选出的特征就应该能够对问题有更好的解释,所以特征选择的目标大致如下:
提高预测的准确性
构造更快,消耗更低的预测模型
能够对模型有更好的理解和解释
三、特征选择的方法
主要有三种方法:
1、Filter方法
其主要思想是:对每一维的特征“打分”,即给每一维的特征赋予权重,这样的权重就代表着该维特征的重要性,然后依据权重排序。
主要的方法有:
Chi-squared test(卡方检验)
information gain(信息增益),详细可见“简单易学的机器学习算法——决策树之ID3算法”
correlation coefficient scores(相关系数)
2、Wrapper方法
其主要思想是:将子集的选择看作是一个搜索寻优问题,生成不同的组合,对组合进行评价,再与其他的组合进行比较。这样就将子集的选择看作是一个是一个优化问题,这里有很多的优化算法可以解决,尤其是一些启发式的优化算法,如GA,PSO,DE,ABC等,详见“优化算法——人工蜂群算法(ABC)”,“优化算法——粒子群算法(PSO)”。
主要方法有:recursive feature elimination algorithm(递归特征消除算法)
3、Embedded方法
其主要思想是:在模型既定的情况下学习出对提高模型准确性最好的属性。这句话并不是很好理解,其实是讲在确定模型的过程中,挑选出那些对模型的训练有重要意义的属性。
主要方法:正则化,可以见“简单易学的机器学习算法——岭回归(Ridge Regression)”,岭回归就是在基本线性回归的过程中加入了正则项。
总结以及注意点
这篇文章中最后提到了一点就是用特征选择的一点Trap。个人的理解是这样的,特征选择不同于特征提取,特征和模型是分不开,选择不同的特征训练出的模型是不同的。在机器学习=模型+策略+算法的框架下,特征选择就是模型选择的一部分,是分不开的。这样文章最后提到的特征选择和交叉验证就好理解了,是先进行分组还是先进行特征选择。
答案是当然是先进行分组,因为交叉验证的目的是做模型选择,既然特征选择是模型选择的一部分,那么理所应当是先进行分组。如果先进行特征选择,即在整个数据集中挑选择机,这样挑选的子集就具有随机性。
我们可以拿正则化来举例,正则化是对权重约束,这样的约束参数是在模型训练的过程中确定的,而不是事先定好然后再进行交叉验证的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18