
工业大数据在未来制造业发挥重要作用
工业大数据是由一个工业体系或者一个产品制造流程智能化催生出来的数据,既是制造业智能化的必然结果,也是制造业智能化的必要条件与基础。工业大数据的应用,将成为未来提升制造业生产力、竞争力、创新能力的关键要素,也是目前全球工业转型必须面对的重要课题。
工业大数据发展过程及特点
1990年,第一个Web服务器诞生,随着二十多年的发展,信息在各个领域中不断增多,计算、存储、交互,各种类型的数据库不断膨胀,最终形成了现在所说的“大数据”。制造业是国民经济的主体,拥有强大的制造业,才能在国际竞争中占据优势地位。工业大数据作为制造业智能化转型的强有力推手,自然被各国列为重点发展领域。
2006年,美国NSF(美国国家科学基金会)提出CPS(信息物理系统)。该系统是通过网络虚拟端的数据分析、建模和控制对实体活动内容的深度对称性管理,是第四次工业革命的核心技术。
2011年,德国在汉诺威工业博览会首次提出工业4.0的概念。德国提出“工业4.0”,强调通过信息网络与物理生产系统的融合,即建设信息物理融合系统(Cyber-PhysicalSystem,CPS)来改变当前的工业生产与服务模式。
2012年3月,美国政府发布《大数据研究与发展计划倡议》,宣布启动对大数据的研发计划。同年,美国通用电气公司提出代表全球工业系统和智能传感技术、高级计算、大数据分析,以及互联网技术的连接与融合的工业互联网概念,强调通过智能机器间的连接并最终将人机连接,结合软件和大数据分析,来重构全球工业。
2015年3月,中国提出了一份具有重要意义的国家战略规划——《中国制造2025》,旨在借力互联网、云计算、大数据,进一步夯实中国制造业的基础和推动制造业的变革,用政策推动中国制造向智能化的方向发展。
工业大数据显著特征之一是数据体量大。企业普通的数据库难以承载如此大体量数据,且存储成本高。云计算是最好的解决方案,企业通过自建私有云或使用公有云平台,实现低成本海量数据存储。此外,在云平台上,企业可运用Hadoop、流计算等分析计算,实现数据的分析处理。
对于工业大数据挖掘和分析结果,可广泛应用于企业研发设计、生产制造、管理服务和供应链等各个环节。在研发设计环节,可实现工艺管理优化和工艺流程优化;在生产制造环节,可实现设备诊断与维护、智能排程、智能生产、产品质量优化、个性化定制;在管理服务环节可实现产品远程监测与维护;在供应链环节可实现供应链全局优化。
工业大数据在国内制造业的应用
从需求来看,目前国内制造业企业对于大数据的需求十分明显,但究竟该如何入手,很多用户仍然处于观望和尝试阶段。因此,对于大数据服务商而言,需要结合行业业务,找到合适的应用场景。
互联网给传统制造业带来挑战,互联网大数据则能够通过技术创新与发展,以及数据的全面感知、收集、分析、共享,为企业管理者和参与者呈现出看待制造业价值链的全新视角,它所带来的巨大价值正在被传统企业认可。
然而,与目前火热的互联网大数据不同的是,工业大数据的应用对于企业而言,门槛相对较高。工业大数据与互联网不同的是,它和行业的业务结合得十分紧密,因此,对于企业的行业积累以及对行业业务的深入理解,都有很高的要求。而且工业大数据的分析相对要求要准,要有十分清楚的逻辑关系。
企业通过大数据分析能使部门之间的数据更为协同,并由此对市场需求缺口进行精准预测,同时通过更为灵活的流程管理,更自动化的生产设备快速地装配调度,进行智能地生产。但是,就目前来看,在国内做工业大数据应用的企业并不少,然而真正拥有自主知识产权、核心技术的企业却不多。要想做好工业大数据应用,首先必须有一套严谨的数据推理逻辑,同时,还要有平台和工具。当前国内做工业大数据应用的企业,他们还没有足够的能力达到这一要求。
尽管如此,仍有部分大型工业企业在应用方面走在前列。如唐山钢铁集团,通过引入国际最先进的生产线,已实现数据实时采集,并与爱施德等企业合作,深度挖掘工业大数据价值,实现生产实时监测、生产排程、产品质量管理、能源管控等。除此之外,先进制造企业基于工业大数据的应用,把产品、机器、资源和人有机结合在一起,推动制造业向基于大数据分析与应用基础上的智能化转型。
总的来说,“互联网+”时代的用户需求呈现实时、少量、碎片化、快速翻新等特点,这对于传统制造业提出挑战。工业大数据有其鲜明的特征,随着信息化和工业化融合,对工业大数据的应用为制造业转型升级开辟了新的途径。对工业大数据在制造业生产过程中的应用场景及应用的深入探讨,将有利于更好地发挥其助力作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07