
实现智能生产、大规模定制,大数据是基础
大数据是制造业智能化的基础,能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
随着制造技术的进步和现代化管理理念的普及,制造业企业的运营也越来越依赖信息技术,以至于制造业的整个价值链,制造业产品的整个生命周期都涉及诸多的数据,制造业企业的数据也呈现出爆炸性增长的趋势。尤其是随着大规模定制和网络协同的发展,制造业企业还需要实时从网上接受众多消费者的个性化定制数据,并通过网络协同配置各方资源,组织生产,管理更多的各类有关数据。
因此,大数据可能带来的巨大价值正在被传统制造业所认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为企业的管理者和参与者呈现出一个全新的看待制造业价值链的方法。
实现智能生产
在“工业4.0”中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。具体而言,生产线、生产设备都将配备传感器,抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时的监控。而生产中所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使工业控制和管理最优化,对有限资源进行最大限度地使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。
例如在过去,在设备运行的过程中,自然磨损本身会使产品的品质发生一定的变化。伴随信息技术、物联网技术的发展,通过传感器技术实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,从而真正实现生产的智能化。一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
此外,从生产能耗角度来看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源的消耗。同时,对所有流程的大数据进行分析,也将会整体大幅降低生产能耗。
实现大规模定制
大数据是制造业智能化的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用,通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
“工业4.0”的本质是基于信息物理系统(CPS)实现“智能工厂”,使智能设备根据处理后的信息,进行判断、分析、自我调整、自动驱动生产加工,直至最后的产品完成等步骤。可以说,智能工厂已经为最终的制造业大规模定制生产做好了准备。
实现消费者个性化需求,一方面需要制造业企业能够生产提供符合消费者个性偏好的产品或服务,另一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人的需求不同,导致需求的具体信息也不同,加上需求的不断变化,就构成了产品需求的大数据。消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘、设备调整、原材料准备等步骤,才能生产出符合个性化需求的定制产品
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01