京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我是一名统计学专业出身的数据分析师,在经过了3年的数据分析工作与踩坑后,我对数据分析这个职业和工作内容有了更深的理解,本次借着报考CDA二级的备考分享聊聊对数据分析师的一些经验。
现在各个公司都在讲数据驱动决策,简而言之就是DA能不能从数据中看出业务不了解的迭代机会点。这里一个很大的误区是把从数据提炼结论“想的太过简单”,至少我当初刚入行是这样,我以为简单看看趋势,喝着咖啡归归因就是DA的工作,但现实比这个难得多。一个简单的道理是,DA做的事情,业务如果自己也能做,那企业为什么要雇佣DA?基于此,DA的核心竞争力来源于对统计学理论知识的深度理解和应用。
数分两大日常一是做实验分析,二是做专项分析,实验分析是DA的能力基线,而专项做的出不出彩决定DA的上限。实验是一个很复杂的链路,从实验设计、实验观测到实验数据解读,DA应该胜任其中的过程,而实验分析的理论基础就是数理统计。“实验分流不均怎么验证和纠偏”、“p值是什么?MDE是什么?”、“CUPED有什么作用?”,这些都是实验上手后的具体问题,DA应该能够利用自己的专业知识进行解答。但实验分析做的再好那也只是对于已有数据表现的解读,DA大多的成就感来源于专项分析。专项分析涉及的理论五花八门,比如可能需要利用回归、合成控制、PSM等方法控制混淆变量进行公平对比,也有可能是针对某个目标科学的制定数据策略并推动落地,这些不仅要求了DA能够掌握如回归分析、机器学习等基础理论,也需要DA对于前沿的因果推断方案有所理解,更需要在理解的基础上能够进行灵活运用并推动落地。
总结来说,单纯的统计学理论知识学习已难以满足岗位对“数据处理 - 模型构建 - 业务落地”全流程能力的要求,DA不仅需要有过硬的专业应用能力,也需要有创新能力、owner意识以及项目推进能力。
本着终身学习的目标,我搜罗了市面上和数据分析相关的证书。与其他证书相比,CDA分级较少且目标较为清晰,同时价格相对优惠,吸引我的主要是三级对于机器学习的学习目标,同时也能帮助我在工作之余简单复习一些统计学基础知识。
因日常工作繁忙,我将备考周期压缩为 1 个月,重点放在官方二级教材上。我将知识点总结成两个部分,一是数理统计相关(包含参数估计与假设检验),二是模型相关(包括数据处理、数据建模与评价指标)。对于数据统计相关的知识重点是概念复习与刷题,需要非常明确掌握各个概念的来龙去脉与详细过程,如假设检验需熟练掌握 “检验方法选择→P 值判断→业务结论” 全流程,比如多组产品质量对比用方差分析。对于模型相关的部分最好是直接在Python 中实操对应案例,优先掌握 “回归 - 分类 - 聚类” 三大算法的核心参数与调用代码(如线性回归用 sklearn.linear_model.LinearRegression,K-means 用 sklearn.cluster.KMeans),跳过复杂数学推导;时间序列模块,聚焦 “平稳性检验 - ARIMA 模型构建” 关键步骤,用 Pandas 处理历史销量数据,练习差分法消除趋势性波动,聚焦 ARIMA 模型参数确定(用 ACF/PACF 图判断 p/q 值)与短期预测等内容。
在教材之外需要刷题来实战冲刺,重点以真题为核心,完成官方的几套真题,严格按 120 分钟考试时间模拟。答题后用 1 小时复盘,重点做两件事:一是统计 “考点错题”,比如机器学习算法选择错误、时间序列 p/d/q 参数判断失误,针对性补练 5-8 个同类小题;二是提炼 “套路模板”,比如假设检验的 “业务问题→假设设定→检验方法→结果解读” 模板、机器学习建模的 “数据预处理→特征筛选→模型训练→评估指标” 模板,减少考试时的思路梳理时间。
CDA 二级的 1 个月高效备考经历,帮助我快速对统计学基本知识进行了查漏补缺,也为学习CDA三级更高阶的内容打好了基础。希望后面三级的学习依然顺利,同时希望CDA能帮助更多分析入门者了解DA日常的工作与基础知识,一起为业务创造增量价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22