京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为何人人都在谈大数据?
某日,一饭店电话铃声响起,客服妹子接起电话。
妹子:你好,这里是XX饭店,请问有什么需要为您服务的呢?
顾客:你好,我想要一份……
妹子:女士,麻烦先把您的会员卡号告诉我一下。
顾客:261478941
妹子:李女士,你好,您是住在海淀区苏州街XX小区23号楼15层1503室,您的电话是186XXXXXX.您家固定电话5698xxxx
顾客:你是怎么知道的......
妹子:女士,因为我们联机到CRM系统。
顾客:我想要一份小龙虾……
妹子:女士,小龙虾不适合您。
顾客:为什么?
妹子:因为据您的医疗记录显示,您对小龙虾是过敏的....
正当时 大数据告诉你不能说的秘密
从上面的对话可以看出,从国防安全到衣食住行,大数据早已渗透到我们社会生活的方方面面。在现如今的大数据时代,我们变得越来越透明。通过网络,我们支付会产生数据;我们打车,会产生数据;我们聊天,会产生数据;就连我们订餐,都会产生数据。我们赖以生存的手机、电脑上都存留着我们的痕迹。信息时代,大数据成为了新的生产要素。
马云曾经在一次演讲中提到,未来的时代将不是IT时代,而是DT时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。
到底大数据是什么?
最早提出大数据时代到来的是麦肯锡:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
这里,可以引用3个比较常用的大数据定义:
1、需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。—— Gartner
2、海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。—— IDC
3、或称巨量数据、海量数据、大资料,指所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。—— Wiki
要理解大数据这一概念,可以先从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结。
大数据的4V特点:
Volume(大量):从TB级别,跃升到PB级别。
Velocity(高速):1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
Variety(多样):如网络日志、视频、图片、地理位置信息等。
Value(价值):以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
大数据的价值体现在:对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;做小而美模式的中小微企业可以利用大数据做服务转型;面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
大数据时代 隐私成最大挑战
对纯理论者来说,大数据是指超过传统数据库能力的数据集软件。对于不断增长的人群来说,大数据是用来快速进行预测分析。对其他人来说,大数据意味着一个由1和0组成的惊人的数字组合。不过,大数据的类型大致可分为以下几方面:
1、传统企业数据(Traditional enterprise data):包括传统的ERP数据,库存数据以及账目数据等。
2、机器和传感器数据(Machine-generated /sensor data):包括呼叫记录、智能仪表、工业设备传感器及交易数据等
3、社交数据(Social data):包括用户行为记录、反馈数据等,比如微信、QQ这样的社交媒体平台。
随着大数据的应用范围不断扩大,越来越多的公司开始部署大数据战略。同时,大数据技术也使得商业发展的速度更快、效率更高。通过大数据技术,企业可以更轻松地获取信息,以便进行更准确地决策。未来,大数据发展又该如何呢?
1、隐私问题将成最大挑战
据一项调查机构显示,到2018年,近50%的企业都将面临隐私泄露问题。大数据时代,解决用户隐私泄露问题,就是解决大数据发展与使用的问题。
2、人工智能将广泛应用
在过去的一年中,我们亲眼见证了人工智能的爆发:无人驾驶汽车试驾成功、AlphaGo围棋获胜。随着人工智能技术日益成熟,未来公司企业将很大程度上依赖于这项技术。
3、将推出更多分析工具
随着数据量的不断增长,数据分析方法也将进一步提高。虽然SQL依然会是数据分析的标准方法,但是新兴分析工具也不可小觑。Spark,作为大数据时代下的一个快速处理数据分析工作的框架,如Google,Facebook等现已纷纷转向Spark框架。
总之,大数据带来了前所未有的机遇,让我们做好准备,迎接新一年的大数据元年。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01