
异常值(Outliers)指在数据集中与其他观测值明显不同的数据点。它们可能是由于测量或记录错误、设备故障、样本偏差或罕见事件等原因引起的。异常值可以对数据分析和建模产生负面影响,因此检测和处理异常值是数据预处理的重要步骤之一。
检测异常值常用的方法包括统计方法、可视化方法和机器学习方法。统计方法通常基于数据的分布特征,例如,基于离群值与平均值或标准差之间的距离来判断异常值。常见的统计方法有Z-score和箱线图。Z-score使用数据点与均值之间的差异除以标准差,如果得到的Z-score大于某个阈值,则将其识别为异常值。箱线图则通过绘制数据的四分位数范围来识别异常值。
可视化方法可以帮助我们直观地发现异常值。例如,散点图可以显示两个变量之间的关系,并突出显示与其他数据点相比较明显偏离的数据点。直方图和密度图可以显示数据的分布情况,从而揭示异常值的存在。通过可视化技术,我们可以更容易地识别和理解异常值。
机器学习方法可以利用算法来检测异常值。常见的方法包括基于聚类的离群点检测和基于分类的离群点检测。基于聚类的方法将数据点分组为簇,并识别与其他簇相比较孤立的簇作为异常值。基于分类的方法则通过构建分类模型来预测新数据点的标签,如果某个数据点无法正确分类,则被视为异常值。
处理异常值的方法取决于异常值的原因和数据分析的目标。一种常见的处理方法是删除异常值。但在删除之前,需要仔细考虑其产生原因,确保它们不是有意义的观测结果。另一种方法是替换异常值。可以用均值、中位数或插值等方法来替换异常值,使其更接近正常数据。还有一种方法是使用缩放或转换技术,如对数变换或标准化,来减小异常值对整体数据分布造成的影响。
然而,在处理异常值时应该谨慎行事,因为过度处理可能导致信息丢失或误导性的结果。应该根据具体情况权衡处理异常值的利弊,并在进行后续分析和建模之前对处理结果进行评估。
综上所述,异常值是与其他观测值明显不同的数据点,可能产生负面影响。检测异常值的方法包括统计方法、可视化方法和机器学习方法。处理异常值的方法取决于异常值的原因和数据分析的目标,常见的方法包括删除、替换和转换。在处理异常值时应该谨慎行事,避免过度处理。通过适当的异常值处理,可以提高数据分析的准确性和可靠性。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10