京公网安备 11010802034615号
经营许可证编号:京B2-20210330

来自CDA考试中心的通知!
亲爱的考生:
诚挚地向您通告,我们即将在 2023 年 10 月 31 日实施 CDA 认证考试的重大更新。这是为保持认证考试的内容与实际行业需求、最新技术及其发展同步而进行的必要步骤, 使 CDA 认证更具有前瞻性、实用性以及严谨性。
这次更新将涉及考试大纲的修改以及考试题目的全新设计,新的题目将更加强调对于应用能力的测试,更加注重考查各位考生在实际工作中所能应用的技能。
我们建议所有的考生尽早开始准备新的考试大纲,这将有助于你们在考试中取得更好的成绩。
Level I 考纲主要更新内容如下:
1. 增加趋势分析法的相关内容
2. 增加指标体系的相关内容,主要关注指标的设计和应用
3. 增加数据管理的相关内容,主要关注数据标准和数据质量的管理
4. 降低了数据结构和业务数据分析的考察占比
5. 调高了数据安全和数据立法等内容的考察占比
6. 业务分析方法做了部分更新,并更名为数据分析方法
Level II 考纲主要更新内容如下:
1. 增加数据治理的内容
2. 增加指标体系的内容
3. 调整各部分的得分占比
4. 标签体系与用户画像的内容调整到和教材一致
5. 更新数据分析模型的部分内容
6. 更新统计分析的部分内容
本次更新后,Level II 考试内容将与教材内容一一对应,推荐各位考生以教材为核心复习资料。
Level III 考纲主要更新内容如下:
1. 增加 LightGBM 等集成算法内容
2. 增加 Pipeline 内容
3. 增加随机参数搜索和贝叶斯搜索等调参内容
4. 增加深度学习的优化算法,正则化,自编码器与表示学习等内容
5. 增加 Transformer 架构的内容
6. 增加大语言模型的架构,使用,微调,Agent 等内容
7. 降低了概论,数据处理与特征工程,文本分析,机器学习基础算法等内容的占比
8. 删除了朴素贝叶斯等过时算法,删除了自动机器学习的部分内容
9. 部分文本分析,特征转换,SVM,序列模式等内容的考察要求降为领会
本次 Level III 更新将在2023年10月1日正式实施,新的考纲和新的题目将会同时启用。
请各位考生注意,从那时起参加的所有考试将根据新的大纲进行,并使用新的题目。为了帮助大家适应这次的更新,CDA 将提供一系列的备考资源,包括新考试大纲的详细介绍、新题目类型的模拟题,以及一些实用的学习资源。我们建议所有的考生尽早开始准备新的考试大纲,这将有助于考生在考试中取得更好的成绩。
感谢大家的理解和配合,希望这次的更新能帮助大家更好地提升自己的数据分析技能,并在自己的技术道路上更进一步。
祝各位考试顺利!
通知和新大纲详见:
https://www.cdaglobal.com/article/356.html
为此,CDA北京授权中心准备了一系列直播对此次大纲升级做详细解读,大家可以点击下放预约卡片预约直播,关注视频号获取后续更多更新。
CDA1级教材根据CDA考试大纲内容编写。既适合CDA LEVEL I考生,也适合业务及数据分析岗位从业人员,教材全面、体系化地讲解了业务数据分析全流程技能,揭秘数据分析的深层逻辑。具有以下特点:
1. 系统性:从基础知识、技能提升、实践应用等方面展开,形成了一个完整的学习闭环。
2. 实用性:注重理论与实践相结合,通过大量案例分析、实操练习,帮助你更好地理解和应用所学知识。
3. 前沿性:介绍了最新的数据分析工具、技术和方法,使你能够紧跟时代步伐,不断提升自己的竞争力。
通过认真学习教材,你将掌握数据分析的基本概念、方法和技术,具备解决实际问题的能力,为通过考试奠定坚实基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21