京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据挖掘领域中,有许多常见的分类算法被广泛应用于数据分析、模式发现和预测等任务。以下是一些常见的数据挖掘分类算法:
决策树(Decision Trees):决策树是一种基于树状结构的分类算法,可以通过对输入数据进行一系列的划分来建立一个预测模型。决策树易于理解和解释,并且能够处理具有离散和连续特征的数据。
朴素贝叶斯(Naive Bayes):朴素贝叶斯是一种基于贝叶斯定理和特征条件独立假设的概率分类算法。它假设每个特征与其他特征之间相互独立,并使用贝叶斯推断来计算后验概率,从而进行分类。
逻辑回归(Logistic Regression):逻辑回归是一种广义线性模型,用于处理二分类问题。它使用逻辑函数来建立输入特征与输出概率之间的关系,可以用于预测新实例的类别概率。
支持向量机(Support Vector Machines,SVM):支持向量机是一种基于统计学习理论的二分类算法。它通过找到一个最优的超平面将不同类别的数据样本分开,同时最大化支持向量与超平面之间的距离。
K近邻算法(K-Nearest Neighbors,KNN):K近邻算法是一种基于实例的学习方法,根据输入实例在特征空间中的邻居进行分类。它使用训练集中的最近邻居来预测新实例的类别。
随机森林(Random Forests):随机森林是一种集成学习方法,结合多个决策树来进行分类。它通过随机选取特征子集和数据样本子集来建立多个决策树,并通过投票或平均预测结果来进行最终的分类。
梯度提升机(Gradient Boosting Machines,GBM):梯度提升机也是一种集成学习方法,通过迭代地训练多个弱学习器并对它们进行加权来提升性能。它通过最小化损失函数的梯度来逐步改进模型的预测能力。
神经网络(Neural Networks):神经网络是一种模拟人脑神经元网络的机器学习模型,可以处理复杂的非线性关系。它由多个连接的神经元层组成,并使用反向传播算法来训练和调整权重,以实现分类任务。
这只是数据挖掘中一些常见的分类算法,还有其他更多的算法如聚类算法、关联规则挖掘等。选择适当的算法取决于数据的性质和特定任务的要求。对于不同类型的问题,可能需要尝试不同的算法或者结合多种算法的优势进行集成学习,以达到更好的分类效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11