京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言画数据图形
plot是一般的画图函数,hist是直方图,boxplot是箱型图。这些函数会覆盖前面的图形,如何创建多个图形便于同时查看呢?方法有三:
1、创建新图形之前先打开一个新的图形窗口,每一幅新图形会出现在最近的图形窗口中。
dev.new() 语句1 dev.new() 语句2 ……
上面的语句,每显现一幅图形之前会新开一个窗口。
2、运用图形界面上的前进后退按钮即可。
3、可以使用dev.new,dev.next,dev.prev,dev.set等函数同时打开多个窗口,并选择将哪个输出到哪个窗口中。使用help(dev.cur)查看说明。这个貌似比较麻烦。
如果将不同的图形放在一个窗口中,可以先用par(mfrow = c(2,3))类似语句创建一个2行3列的图形集合,然后用plot一个一个画图就行了,结果见下图:
3.2一个简单的例子
3.3图形参数
可以通过图形参数自定义一幅图的多个特征(字体、颜色、坐标轴、标题、图例等)。par函数可以对图形参数进行设置,执行par()可以查看各种参数,添加参数no.readonly = TRUE,可以查看可修改的参数列表。需要说明的是,设置par之后在关闭软件前(会话结束前)一直有效。
可以先记录原始参数,然后结束一段语句之后再进行还原。比如:
opar <- par(no.readonly=TRUE) #记录初始设置 par(lty=2,pch =17) ... par(opar) #进行还原
当然可以在plot函数的后面直接设置参数。并不是所有的参数都是可以指定的,用help函数可以查看具体函数。下面介绍一些图形参数。
3.3.1符号和线条
开启截图模式:
具体的见下面截图:
上图中的21-25可以指定边框的颜色(col=)和填充的颜色(bg=).
上面是线型的设置。
3.3.2下面是颜色的设置
上面是颜色的设置说明,需要在具体的函数上进行实现和验证。col函数后面可以用编号、颜色名称、十六进制颜色值、RGB、HSV等进行设置。RGB是三原色,HSV是基于色相、饱和度、亮度来生成函数。colors可以查看所有颜色名称,嗯,657种。
可以由很多函数来生成连续的颜色,rainrow(),heat.colors(),terrain.colors()topo.colors(),cm.colors()等,gray函数可以产生多阶灰度,后面加一个0-1之间的向量。
pie函数用来画饼图,下面是一个例子:
par(mfrow = c(1,2))下面是结果:
3.3.3文本属性
图形参数可以指定字号、字体和字样。下面是相关的参数说明:
字体族是比较难以设置的。family这里的衬线、无衬线字体和等宽字体等可以设置,windo下分别映射为TT Times New Roman、TT Arial和TT Courier New。如果想用其他映射,可以用windoFonts函数进行设置。用pdf输出图形,字体设置会简单一些,用names(pdfFonts())查看可用字体,输出是只需要在pdf函数中增加参数 family = “fontname”就可以了。PostScript格式(一种用来打印的格式字体)也是类似的道理。
3.3.4图形尺寸与边界尺寸
下面写一个例子:
dose <- c(20,30,40,45,60)
dragA <- c(16,20,27,40,60)
dragB <- c(15,18,25,31,40)
opar <- par(no.readonly = TRUE)
par(pin = c(2,3))
par(lwd = 2,cex = 1.5)
par(cex.axis = .75,font.axis = 3)
plot(dose,dragA,type = "b",pch = 19,lty = 2,
col = "red")
plot(dose,dragB,type = "b",pch = 23,lty = 6,
col = "blue",bg = "green")#这里的col和bg是对pch=23的图形进行的设置,当然这里的col也对线条颜色进行了设置
par(opar)数据分析师培训
下面是结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27