京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
相信大家一定会seaborn或者matplotlib这几个模块感到并不陌生,通常大家会用这几个模块来进行可视化图表的制作,为了让我们绘制的图表更具交互性,今天小编来给大家介绍个组件。
首先我们通过pip命令来下载该模块
pip install ipywidgets
该模块中的interact函数可以和我们自定义的函数相结合,随着我们输入的不断变化,输出也会产生相应的不同结果,我们来看一个简单的案例
from ipywidgets import interact def f(x): print(f"The square value is: {x**2}")
interact(f, x=10)
output
当我们拖动当中的圆点的时候,输出的结果也随之变化。当然我们也可以将其当做是装饰器来使用,代码如下
@interact(x=10) def f(x): print(f"The square value is: {x**2}")
output
上面的自定义函数中,当然我们可以自行设定横轴当中的最大值与最小值,以及每拖动一次x值的变化(和Python当中的range函数类似),
interact(f, x=widgets.IntSlider(min=-10, max=30, step=1, value=10))
output
而当输入框中的参数不止一个参数的时候,可以有不止一个的滑动条,代码如下
import ipywidgets as widgets
one = widgets.IntSlider(min = 0, max = 10)
two = widgets.IntSlider(min = 0, max = 100)
three = widgets.IntSlider(min = 0, max = 1000)
ui = widgets.HBox([one, two, three])
def func(x, y, z): print(f"The first value is: {x + 2}") print(f"The second value is: {y * 2}") print(f"The third value is: {z ** 2}")
out = widgets.interactive_output(func, {"x": one, "y": two, "z": three})
display(ui, out)
output
当参数类型是字符串时,则是需要通过输入框的形式来进行交互,代码如下
def f_2(x): print(f"The value is: {x}")
interact(f_2, x="Hello World")
output
而当我们输入的X参数是一个列表里面有着若干个字符串的时候,则会在输入框中出现个下拉框,如下所示
interact(f_2, x=["Hello World", "你好"])
output
然后我们来看看该模块和seaborn之间的结合,我们先用Pandas模块来读取数据集,代码如下
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
output
我们简单地来画一张直方图,代码如下
import seaborn as sns import matplotlib.pyplot as plt
%matplotlib inline g = sns.countplot(data = df, x="Gender", hue="Attrition")
output
我们可以将绘制图表的这一行代码封装成一个函数,将代码中的“x”甚至是“hue”作为是输入的参数,代码如下
## 筛选出离散型变量的特征 categorical_columns = [column for column in df.columns if df[column].dtype == "object"] ## 做成下拉框的形式来进行交互 dd = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Select a column") @interact(column=dd) def draw_countplot(column): g = sns.countplot(data = df, x=column, hue="Attrition")
output
我们可以在下拉框中选择不同的离散型变量的特征从而绘制出不同的图表,当然一个下拉框可能有人会觉得有点少,我们可以再来扩展一下
## 两个下拉框 dd1 = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Column")
dd2 = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Hue")
ui = widgets.HBox([dd1, dd2]) ## 绘制图表的函数 def draw_countplot(column, hue):
g = sns.countplot(data = df, x=column, hue=hue) ## X轴方向的标记会旋转60度 if len(df[column].unique()) > 3:
g.tick_params(axis="x", rotation=60) out = widgets.interactive_output(draw_countplot, {'column':dd1, "hue": dd2}) ## 最终将图表呈现出来 display(ui, out)
output
当然有可能会觉得都是输入框的话会有点无聊,那我们在输入框的同时加入一个滑动条,对应的是输入的参数是整型或者是浮点数时
## 两个输入框还有一个滑动条 dd1 = widgets.Dropdown(options=numeric_columns, description="Column1")
dd2 = widgets.Dropdown(options=numeric_columns, description="Column2")
slider = widgets.IntSlider(min=df['Age'].min(), max=df["Age"].max(), description="Max Age")
ui = widgets.HBox([dd1, dd2, slider]) ## 绘制图表的函数 def draw_relplot(column1, column2, age):
p = sns.relplot(data=df[df['Age']<=age], x=column1, y=column2) out = widgets.interactive_output(draw_countplot, {"column1": dd1, "column2": dd2, "age": slider}) ## 将最终的图表给呈现出来 display(ui, out)
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27