
作者Shareef Shaik,有抱负的数据科学家
最近,我积极地开始找工作,转到数据科学,我没有任何正式的教育,如硕士或博士。AI/机器学习背景。我开始学习它完全是出于我自己的兴趣(不仅仅是因为炒作)。这是一个具有挑战性的轨道选择加入,特别是如果你同时在一些其他技术上工作。我开始了我的旅程,注册了许多MOOCs(大规模开放在线课程),并开始阅读多个博客。最初,它没有意义,最终在阅读了其他人的代码并用实时数据集弄脏了我的手之后。它慢慢地开始有意义了。
当我开始找工作时,开始了一个有趣的新故事。我在印度打开了一个顶级职位门户网站,开始寻找工作,我发现很少与我正在寻找的工作相关,但当我打开其中一个时,令我惊讶的是,他们提到的要求对我来说是新的。撇开传统的数据分析、机器学习和深度学习不谈,一些ETL工具和多种大数据技术被认为是必要的技能。我认为这没什么,因为现在每个公司都有自己对数据科学家的定义,并开设了另一份工作。这一次,它需要一些其他技术,如AWS、Azure和Power BI。
请记住,所有这些空缺都只标记在数据科学家下面。所有这些开放都有共同的需求,如机器学习算法、统计、数据分析、数据清洗和深度学习技术。除了这些技能之外,一些公司还希望候选人具备云(AWS、Azure或GCP)和数据可视化工具(如Tableau、Power BI)以及ETL工具(如SSIS)方面的知识。通常,这些技术更多地与数据分析师/数据工程师角色有关,但数据科学家角色仍在发展,并没有真正坚持特定的技能。
我确实理解这样一个事实,即公司寻找一个适合他们空缺职位的申请人,也有他们正在寻找的技术技能。这肯定会为公司节省时间和金钱,而不是再次提供培训。
所以,这里我有了一个有趣的想法,可以理解IT行业对数据科学家角色的实时期望,而不是MOOCs中通常教授的。
目标:我们将试图找出目前行业中最需要的技能和趋势。为此,我们将从作业门户中刮取数据。
注:整个分析是为印度市场的数据科学家角色而做的。
在这篇文章中,我们将试图找到几个重要问题的答案,每个数据科学求职者都会记住这些问题。
注意:您可以在结论部分找到完整代码的链接。
我从印度最大的求职门户网站--naukri.com收集了所有相关的求职信息,几乎每个求职者和招聘人员都使用这个网站。由于传统的BeautifulSoup方法在这个网站上不太好用,所以我使用了selenium-python来进行网页搜索。
免责声明:网上搜索纯粹是出于教育目的。
我们将为每项工作收集五个要素:角色、公司名称、经验、地点和关键技能。
刮擦代码:
[removed][removed]
在我们潜入之前,让我们做一些基本的预处理。
执行查找丢失值并删除它们的基本清理。
在处理重复数据时,我们需要非常小心,因为一个公司可能会多次发布相同的需求,因为该工作仍然空缺或,另一方面,该公司可能正在寻找具有相同需求的全新空缺。为了简单起见,我没有删除任何数据。
为了避免冗余,将所有字符串转换为小写,并标记了位置和技能列,因为这些列中有多个值。
这就是它如何处理预处理。
现在,我们只有一切可以开始了。
注意:如果您不是印度人,可以跳过此地点部分。
这是一个重要的步骤,因为在一些结果之后,工作门户通常开始显示一些与我们搜索的工作无关的其他工作。为了确保我们正在寻找正确的角色,让我们检查一下10个经常提到的角色。
终于,我们到了。你读这篇文章的主要原因。
让我们深入研究一下,更清楚地了解趋势。
你真的必须具备这篇文章中提到的所有技能才能找到工作吗?
好吧,不是真的,如果你的基础很强,列表中很少有工具在工作中容易找到。话虽如此,如果你只是在找工作,在简历上写上这些技能可能会帮助你获得面试机会。
如果你具备数据科学家必须具备的所有技能,那么最好的方法应该是开始参加面试,同时努力填补你理解上的空白,学习你认为会让你比其他候选人更有优势的工具/技术。
您可以在我的GitHub上找到完整的代码。您可以通过LinkedIn连接到我。
如果你发现这有帮助或有任何问题,请让我在评论中知道。
回头见.快乐的编码…!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11