京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pini Raviv,以色列初创公司的软件工程师和前端团队负责人。
数据科学是一个很好的工作领域,但像其他高度专业化的领域一样,你必须处理工作中的挫折。
根据我的经验,工作场所问题的主要来源是业务主管和数据团队之间的脱节。只有能够理解的数据才是有帮助和价值的。数据科学专业人员有时会因忘记这一事实而感到内疚。
沟通很重要,但是应该如何沟通?这里有五个技巧,你可以用来向业务利益相关者传达你想要表达的观点,这也将减少你与他们之间的摩擦。
创建相关的数据可视化
除非你的老板特别要求,否则避免大量的报告。人是视觉生物。我们通过图片来理解结论要比表格容易得多。数据可视化工具可以使您的分析变得生动,但挑战并没有就此结束。您仍然需要确保您的数据易于理解。
数据科学家没有时间来掌握平面设计,但有几个黑客你可以使用。在线工具,如Coolors和Paletton,可以帮助您创建既有吸引力又能解决观众色盲问题的配色方案。一个简单的DIY黑客是在一个在线照片编辑器中像素化你喜欢的图片,并提取那些颜色。
极简主义是通过图表传达你的结论的关键。删除图表中不会给你的广泛结论增加价值的呼出,如果呼出可以更好地传递信息,可以考虑删除X和Y轴标签。明智地选择字体,在整个演示文稿中不要使用两种以上的字体。谷歌免费字体,坚持这个公式。
在您的演示文稿中添加一些花哨的东西(动画、有趣的侧边栏等)是很有诱惑力的,但要避免这些东西,除非它们与您的涉众想要度量的核心相关。一般的业务用户都被数据吓倒了,而您的工作就是为他们简化数据。你的结论越容易理解,你就越不需要向管理层辩护你的工作,你会发现他们更愿意信任他们的数据。
始终提供上下文
在重分析的组织中有一种倾向,崇拜数据,忘记数据不是事实。事实上,数据在有上下文缠绕之前根本不是那么相关的。将数据上下文化是数据科学专业人员工作的一部分。管理层对数据的信任程度越高,就越应该关注数据的偏差、缺陷和完整性。
首先评估您是否从所有相关来源收集了数据。如果您忽略了重要的数据源,您将看到的只是一小部分的难题。始终考虑到您的数据可能存在于您尚未接触过的源中的可能性。
接下来,对数据进行分段,将其分解成小块。数据分割将帮助您对数据进行分类和深入挖掘。如果您的受众是普通的业务用户,那么始终将您的细分与业务目标联系起来,而不是与感兴趣的技术目标联系起来。
记住您的听众
数据科学家常常因为忘记了他们的听众,迷失在他们数据的技术细节中而感到内疚。您可能必须开发创造性的编码解决方案才能得出结论,但如果您的听众不是技术人员,他们可能不会关心。
例如,假设你的经理要求你提供一份报告,列出上个月每个日期销量最高的产品。按日期对最畅销的产品进行分组是很容易的,但你需要做的是只按日期显示性能最好的产品。Postgres和Redshift的窗口函数简化了这一点。
但是,如果您的组织使用MySQL怎么办?您需要使用group_concat将数据滚动到按日期分组的CSV字符串中,然后使用substring_index提取最佳执行者。打得好!然而,你的经理并不关心你的技术魔法。她只想要结果。
关注你的听众可以让你管理他们的期望。数据科学家的一个常见抱怨是,管理层倾向于强加不现实的要求。在业务用户看来微不足道的事情往往需要复杂的技术解决方案。与其深入研究任务的技术细节,不如用业务术语告诉他们后果。
例如,您可以让他们知道他们的请求将需要一周来完成,而不是一天。通过这样的交流,你将会说出他们的语言,而不是给人留下一个技术炫耀者的印象。对于一般业务用户来说,数据是一个黑盒子。你的工作是为他们翻译,而不是教他们需要做什么。
设置期望
管理层经常在最后一分钟添加变量请求,数据建模人员咧嘴笑着承受它们。这些最后一分钟的请求通常需要额外几天的数据收集和清理,并将截止日期推得更远。
另一个常见的情况是处理不合理的请求。您的公司可能只有一个月的数据,但可能需要一年的销售预测。管理层可能听说过ML和统计技术填补数据漏洞的能力,并可能期望您将这些技术插入进来以获得结果。
你必须在每一项任务之前设定期望,以避免接下来的问题。合并可变的提交截止日期和使用业务友好的语言生成数据质量报告通常是设置期望的有效方法。
坚持流程
好的数据分析要求您花时间了解您的数据集并理解它们的来源。在快节奏的环境中,您可能希望匆忙进入分析部分并生成报告。
请记住,您作为数据分析师的职能是为业务目标服务。
产生错误的报告只会削弱组织对你的信任。许多企业经理习惯于依靠自己的直觉,不信任数据。跳过部分流程来生成快速报告不会让他们更信任你。
始终通信
沟通是为组织创造价值的关键。数据科学家可能会陷入技术细节的泥潭,并以对业务不友好的方式进行交流。这些技巧将帮助你避免落入这个陷阱,你将设法为高管提供对他们业务的真正洞察力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22