
随着数据在业务中扮演着越来越重要的角色,数据专业人员的需求仍然很高。尽管数据科学劳动力短缺,但这个领域可能是一个竞争激烈的领域。如果员工想增加他们获得理想职位的机会,他们可以在简历上增加一些变化。
简历上的多样性体现了灵活性,这是当今数据专业人员的一项基本技能。它可能是一个很好的简历助推器,但从一个职位跳到另一个职位来改善简历是不实际的。谢天谢地,申请人可以增加多样性,而不需要承担许多新的工作。
以下是数据专业人员在简历中添加变化的七种方法。
职位头衔不是简历上唯一能展示多样性的东西。如果申请人名下有任何出版物,如书籍、期刊文章或白皮书,他们应该列出这些出版物。这些对潜在的雇主来说是一个例子,表明一个工人对他们的领域是认真的。
记住,每件事都应该与手头的具体工作相关。数据相关职位的简历中只应显示与数据相关的出版物。如果工人没有任何相关的出版作品,他们可以寻找机会成为其中的一部分。
在整个职业生涯中,数据专业人员将从事各种项目,无论是工作还是业余爱好。无论它们是令人印象深刻的个人追求还是为公司节省资金的事件,这些项目都是相关技能的例子。提到具体的项目而不是一般的工作描述也会给重复的简历增加变化。
任何展示不同方法或技能,或特别令人印象深刻的东西都值得一提。对这些项目的描述不需要很长,应该集中在使它们独特的地方。最好用数字和指标来表达这些成就,这些数字和指标比语言更突出。
申请者的当前公司可能有项目,可以为简历添加变化。当数据专业人员工作时,他们应该寻找任何学习或使用新技能的机会。自愿成为这些任务的一部分将有助于建立一份更令人印象深刻的简历。
数据专业人士可以向他们的经理询问任何这样的机会,或者密切关注这些机会。无论是在一个特殊的公司项目上工作,还是为部门开创一个新的流程,这些出现的频率比一些人想象的要高。
数据专业人员不必将自己局限于当前职位上可用的工作。数据科学家和分析师是急需的员工,所以他们可以从事自由职业来提升简历。自由职业项目使专业人员能够承担他们原本无法完成的任务,在没有另一份全职工作的情况下增加了变化。
由于这种类型的工作使专业人士能够选择他们自己的时间,它可以适应他们目前的时间表。工人不需要承担太多额外的工作。仅仅几个项目就可以增加一些所需的多样性。
如果专业人士想找到另一个能增加多样性的全职职位,他们可以考虑在国际上工作。与美国公司相比,国际公司更有可能有不同的项目。即使他们没有,与不同的文化合作也显示了灵活性。
国际上有几种工作方式,所以工人们无论现状如何都能找到一些东西。数据专业人员甚至可以为国际公司找到合同工作,这样他们就可以在其他工作的基础上完成这项工作。
即使通过各种职位,数据专业人员可能会发现他们的日常工作看起来相似。这些员工仍然可以找到机会,通过提及他们积累的软技能,在简历中增加变化。即使以数据为中心的工作从一个职位到另一个职位看起来都一样,不同的工作环境可能会发展出各种软技能。
处理数字并不是数据专业人员工作中唯一重要的技能。他们还需要将结果传达给不同的受众,在团队中工作,并具有适应性。突出这些软技能而不是看起来更相似的任务会增加简历的多样性。
招聘经理通常只有30秒的时间来查看求职者的简历。数据专业人员需要在不占用太多空间的情况下展示多样性。对所有描述符的具体说明也迫使申请者专注于使每个条目唯一的东西。
对不同的数据位置进行一般的、缩小的查看可能会使它们看起来都一样。对每一个都进行具体说明会突出它们的不同之处。
与数据相关的工作有很多种,即使它可能不会立即显现出来。希望改进简历的数据专业人员可以按照以下步骤来展示这种变化。然后,他们可以成为一个更有吸引力的候选人,在一个已经很有需求的领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05