
小白学数据分析--到底要怎么做流失分析
最近看了很多关于流失分析的文章,也构建了一些模型,流失这个问题看似有些让人抓不住一根主线来做,这几天也有几个朋友问我怎么来做流失的分析,但是最近工作变动,外加上很忙,就没有很好的跟他们说说这个问题。说道流失流失分析,很多人都知道使用决策树算法,C5.0、Chaid、Quest或者贝叶斯,也有用聚类分析的,总的来说流失分析的方法很多,但这些都是技术层面的,也算不上是一个流失模型。
前几天看到一篇文章来讲述怎么分析永恒之塔的流失,方法和过程真的很不错,不过流失分析远比这个还要多,其原因在于,那篇文章中,作者是选取了1-10级的新手作为研究对象,而实际上,流失分析面向的对象不仅仅就是新手(废话,谁都知道!),这句话是句废话,现在看,做数据分析的都明白,然而一旦真的做数据分析,研究流失率时,往往就忽略了我们要对那些人进行流失分析,眉毛胡子一把抓。
早先写过一篇关于流失分析设计的文章,但是后来反映设计的过于复杂和繁琐,没必要这么分析。其实,我觉得很有必要。流失分析不是你信手拈来就开始做你的流失分析的。在之前的文章中,主要设计的是历史用户的流失分析方式,把历史用户的流失分成了留存、沉默、流失、回流、植物等几类情况,实际上这种分类的形式是由玩家的游戏生命进程(生命周期)决定的,原因我觉得有以下几点:
1.游戏进程不同,用户的反馈不同;
2.不同阶段的流失用户,不同的挽留措施;
3.不同生命进程,流失用户特征不同。
正如文章所言,流失分析很多情况下只是告诉你谁会流失,流失的人有什么特征,而这两点对应的是流失分析的两个方面:
1.谁会流失->流失用户的预测,告诉你流失的可能;
2.流失特征->流失用户的特征,告诉你流失的特征。
而流失分析最终的目的是通过这两点,仅仅结合业务分析流失的原因(再好的算法,模型不会告诉你原因),而解决了谁会流失,流失特征,流失的原因,那么就可以进行挽留措施的实施,到此一个完整的流失分析闭环才形成。
形成闭环的原因在于,新的一批用户会继续检验我们的流失分析模型,我们希望在同样的游戏进程时期或者状态下,能够通过不断的修正模型,使之具有普适性。这样的一些模型最后组合起来,就可以比较全面的描述玩家不同的游戏生命进程的流失特征。当然这需要不断的实验和分析,因为用户的质量也是要考虑的。最后,建立在反复使用模型分析的基础上,得到显著性的模型框架。
而这个过程中,值得我们注意的是,往往我们很多时候做的是这其中一小部分,而我们恰恰把这一小部分放大认为是流失分析的全部,比如我们做了40级-50级的流失用户,找出流失用户可能性,流失特征,但是往往忽略做一些挽留的措施,挽留的措施有的是软性的,比如通过活动,奖励等实施,也有通过更改系统设计来弥补,但是这要看你做的流失分析用户流失的严重程度,换句话说如果这一阶段的流失是一部分客群引起的高流失,而这部分客群不代表我们整体客群(流失客群的特征与之前历史客群在该阶段流失特征不符合,那么这就不是系统设计的因素造成的),此时就不能轻易使用更改系统设计的办法,多数情况下采取软性的手段,帮助用户过度。
然而,回头来看,站在一个高度来看我们是根据了玩家的游戏进程到什么阶段(处于的状态)来确定我们的流失分析对象和方法的。
看了永恒之塔的流失分析我发现,之前的针对新手的流失分析没有深入的做过研究,PRARA模型关注的很多也是用户保有留存的问题,可以看得出一批新用户,我们关注更多的是留存问题,而那些历史用户我们关注的流失问题。
针对用户流失的设计我们大概有月流失,周流失,沉默,然而我们在这块的分析远远没有达到一个高度,毕竟我们的收入主体还是来源于这些历史用户,本身来说付费转化,游戏学习成本都很低了,专注这些用户,做好挽留发挥的效益更大。
然而新用户正如文章也提及的情况,新用户对游戏的学习,操控,熟悉还不完全,即使我们获取了信息,流失特征,流失可能性,大概我们想找出来玩家为什么还是会离开难度就会比较大,即使我们有最好的新手体验流程和新手缓冲期,但不能避免的用户流失(当然这不是说新用户的留存、流失分析不重要)。然而反过来当玩家游戏生命周期进入稳定期或者提升期,却面临了很大的流失,那么我们获取流失特征,分析流失可能性,最后做出挽留得到的效益远远大于新手的流失分析。
说了上面这句话大概看到的人会笑,会喷我,补充一句的是,一个游戏就像一个池子,有进水口,也有出水口,我们希望进水口大,出水口小,然而进水口再大,你不进水,有一天出水口也会让池子干涸,因此控制出水的同时,也要想办法做好进水口,也就是如何做好新玩家的分析,预测,挽留。因为留下的新玩家有一天也会变成我们定义的老用户,进而变成我们要设法挽留的老用户。每个玩家在游戏中都是有生命周期的,流失分析的目的是拉长这个周期的同时,将价值发挥到最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01