
对于数据科学来说,现在是发展的黄金时期。这是个新领域,但增长迅速,同时数据科学家的缺口也很大。最好的学习方法是通过实践,知道自己真的需要学习什么,最重要的是,当你通过这种方式学习,你可以获得立刻就可以用到的技能。
1、学会爱数据
数据科学是一个广泛而模糊的领域,这使得它很难学习。 没有动力,你最终会中途停止对自己失去信心。你需要些东西来激励你不断学习,即使是在半夜公式已经开始变的模糊,你还是想探究关于神经网络的意义。你需要些动力来让你发现统计、线性代数和神经网络之间的联系,当你在困惑“下一步我该学习什么?”的时候。我学习的入口是用数据来预测股市,尽管当时我完全不熟悉。我编码的第一批项目用于预测股票几乎没有统计,但是我知道它们表现的并不好,所以我日以继夜的工作让它们变的更好。我痴迷于改善程序的性能,我痴迷于股票市场,我学习去爱数据。我去学习一切能让这个项目结果更好的技能。并不是每个人都会痴迷于股市预测,但重要的是要发现你想学习的东西。数据可以计算出关于你的城市很多新鲜有趣的事情,比如所有设备在互联网上的映射、找到真正的NBA球员的位置,今年又哪些地方有难民,或者是其他事情。数据科学的伟大之处是有无限有趣的东西可以发现——那就是问问题然后找到一个方法来得到答案。
2、在实践中学习
学习神经网络、图像识别和其他尖端技术是很重要的,但大多数数据科学工作不涉及这些:90%的工作将是数据清理。精通几个算法比知道一点许多算法要好。如果你知道线性回归、k – means聚类和逻辑回归可以解释和诠释他们的研究结果,并可以用这些完成一个项目,你将比如果你知道每一个演算法,但不使用它们更优秀。大多数时候,当你使用一种算法,它将是库中的一个版本(你很少会自己编码支持向量机实现——这需要太长时间)。所有这些意味着最好的学习方法是在项目工作中学习,通过项目,你可以获得有用的技能。
一种方法是在一个项目中先找到一个你喜欢的数据集,回答一个有趣的问题。这里有一些好的地方。
另一种方法是找到一个深层次的问题,例如预测股票市场,然后分解成小步骤。 我第一次连接到雅虎财经的API,并爬下每日价格数据。然后我创建了一些指标,比如在过去的几天里的平均价格,并用它们来预测未来(这里没有真正的算法,只是技术分析)。这个效果不太好,所以我学会了一些统计知识,然后用线性回归。 然后连接到另一个API,清理每一分钟的数据,并存储在一个SQL数据库。 等等,直到算法效果很好。
这样做的好处是我在一个学习环境中学习。不仅仅学习了SQL语法,用它来储存价格数据,还比仅仅学习语法多学习了十倍的东西。学习而不应用的知识很难被保留,当你做实际的工作的时候也不会准备好。
3、学会沟通
数据科学家需要不断展示他们的分析结果。这个过程可以区别数据科学家的水平。交流的一部分是对主题的理解和理论, 另一个是理解如何组织你的结果。最后一部分是能够清楚地解释您的分析。 展示你的数据分析的结果。试着教那些对数据科学技术知识并没有什么概念的人,比如你的朋友和家人这可以可以帮助您理解概念。试着在聚会上演讲。使用github管理你所有的分析。在一些社区中活跃,比如Quora , DataTau , machine learningsubreddit。
4、向同行学习
你根本想不到你会从同行身上学到多少东西,在数据工作中,团队合作非常重要。在聚会中找一些同伴。开源软件包。给哪些写有趣的数据分析博客发消息看有没有合作的可能。
5、不断增加学习的难度
你完全熟悉这个项目的工作了? 你最后一次使用一个新概念是在一周前? 那么是时候做些更加困难的挑战了。如果你停止攀登,那么不进则退。如果你发现自己太舒适,这里有一些建议:处理更大的数据集。 学习使用spark。看看你能不能让你的算法更快。你将如何将算法扩展到多个处理器? 你能做到吗?理解更多的理论算法并使用。这会改变你的假设吗?试图教一个新手去做你现在正在做同样的事情。上面这些这至少是一个思路告诉你在开始学习数据科学的时候到底要做什么。如果你完成了这些,你将发现你的能力自然而然就提升了。我不喜欢那些“一个清单”这样的建议,因为这让我很难按部就班去做。我发现很多人在跟着书单或者课程学习中半途而废。我个人相信如果你有正确的目标任何人都可以学习数据科学。这是一个帮助你学习大数据的网站,其中包括了很多优秀的学习经验和讨论。你可以分析一些有趣的数据集,比如美国中央情报局的文件和球员统计。还可以完成一些项目,比如建立一个投资组合。如果你不知道如何分析,这也不是问题,我们会教你python。我们教Python因为它是最初级的友好语言,用于大量生产数据的科学工作,可用于各种各样的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09