京公网安备 11010802034615号
经营许可证编号:京B2-20210330
总结决策树之前先总结一下特征的生成和选择,因为决策树就是一种内嵌型的特征选择过程,它的特征选择和算法是融合在一起的,不需要额外的特征选择。
一、特征生成:
特征生成是指在收集数据之时原始数据就具有的数据特征,这些数据特征由收集的数据决定(其实也就是在产品定型时设定的需要收集的数据特征),当然,在数据预处理时,也可以在此基础上构造一些新的数据特征,这些特征越多越好,表示你考虑问题比较周全,具体那些变量有用或没用,这要交给下一步特征选择来决定。
二、特征选择
特征选择是指在原有数据特征的基础上,去除重要性比较低的特征变量,过滤出有用的特征变量。这里比较困难的是搞清楚什么样的特征比较重要?这需要根据具体的问题具体分析,有些变量的选择可以很直观的看出来,但这种直觉也不一定正确。对于常用特征选择方法主要有:过滤型、包装型、内嵌型。
过滤型:是指你可以根据某个统计量的大小排序来选择特征变量,如相关系数、p值、R值等
包装型:是指在一个特征集合中选取最优的特征子集。具体需要考虑:用什么样的算法来选取?选取的最优的标准是什么?
常用的算法是分步回归包括向前搜索、向后删除、双向搜索
向前搜索:每次选取一个能使模型预测或分类效果最好的特征变量进来,进来后不退出,直到模型改善效果不再明显;
向后删除:是指每次从特征全集中每次删除一个特征变量能使模型预测或分类效果最好,退出后不进来,直到模型改善效果不再明显;
双向搜索:是指每次每次删除一个特征变量或加入一个特征变量能使模型预测或分类效果最好,退出的不进来,进来的不退出,直到模型改善效果不再明显;
这里再提一下特征变量选择的几个标准:p值、R值、AIC(越小效果越好)、BIC(越小效果越好)、熵(越小效果越好)
内嵌型:这里应该主要就是像决策树这样的情况,算法内部完成特征变量的选取。
三、决策树
决策的几个要点:1、如何决策?(也就是如何树如何分叉)------熵和信息增益---这里面包含的就是特征的选择?哪个特征变量包含的信息量大,就排在前面,至于最后树的深度就决定特征变量的个数。
当然不同的算法使用的衡量的标准不同,还有:信息增益比、基尼不纯系数
2、如何剪枝?-----一般是事后剪枝
3、连续性变量如何离散化?-----阈值的选择
熵:是指信息的混合程度(混乱程度),熵【0-1】越大表示该集合中混合的信息越多,也就表明这次的分叉效果不好还是有很多不同类的信息混在一起
信息增益:熵值的减少量,越大越好
决策树模型特点:模型易于解释;存储空间较小,以树的形式存储,决策树是一个弱分类器,不能完全分类,需要把多个弱分类器通过多数投票法组合在一起。
四、R包实现决策树
library(rpart)
library(rpart.plot)
## rpart.control对树进行一些设置
## xval是10折交叉验证
## minsplit是最小分支节点数,这里指大于等于20,那么该节点会继续分划下去,否则停止
## minbucket:叶子节点最小样本数
## maxdepth:树的深度
## cp全称为complexity parameter,指某个点的复杂度,对每一步拆分,模型的拟合优度必须提高的程度
ct <- rpart.control(xval=10, minsplit=20, cp=0.1)
## kyphosis是rpart这个包自带的数据集
## na.action:缺失数据的处理办法,默认为删除因变量缺失的观测而保留自变量缺失的观测。
## method:树的末端数据类型选择相应的变量分割方法:
## 连续性method=“anova”,离散型method=“class”,计数型method=“poisson”,生存分析型method=“exp”
## parms用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法(gini和information)
## cost是损失矩阵,在剪枝的时候,叶子节点的加权误差与父节点的误差进行比较,考虑损失矩阵的时候,从将“减少-误差”调整为“减少-损失”
data("Kyphosis")
fit <- rpart(Kyphosis~Age + Number + Start,data=kyphosis,
method="class",control=ct,parms = list(prior = c(0.65,0.35), split =
"information"));
## 作图有2种方法
## 第一种:
par(mfrow=c(1,3));plot(fit); text(fit,use.n=T,all=T,cex=0.9)
## 第二种,这种会更漂亮一些:
rpart.plot(fit, branch=1, branch.type=2, type=1, extra=102,
shadow.col="gray", box.col="green",
border.col="blue", split.col="red",
split.cex=1.2, main="Kyphosis决策树");
## rpart包提供了复杂度损失修剪的修剪方法,printcp会告诉分裂到每一层,cp是多少,平均相对误差是多少
## 交叉验证的估计误差(“xerror”列),以及标准误差(“xstd”列),平均相对误差=xerror±xstd
printcp(fit)
## 通过上面的分析来确定cp的值
##调用CP(complexity parameter)与xerror的相关图,一种方法是寻找最小xerror点所对应
#的CP值,并由此CP值决定树的大小,另一种方法是利用1SE方法,寻找xerror+SE的最小点对应的CP值。
plotcp(fit)
##利用以下方法进行修剪:
## prune(fit, cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])
fit2 <- prune(fit, cp=0.01)
#利用模型预测
ndata=data.frame(...)
predict(fit,newdata=ndata)
#案例
str(iris)
set.seed(1234)#设置随机数种子--使每次运行时产生的一组随机数相同,便于结果的重现
#抽样:从iris数据集中随机抽70%定义为训练数据集,30%为测试数据集(常用)
#这里是对行抽样,ind是一个只含1和2的向量
ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
trainData <- iris[ind==1,]
testData <- iris[ind==2,]
f<-Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
#训练数据
fit<-rpart(f,trainData)
#预测
re<-predict(fit,testData)
#******************或者用其他包********************
library(party)
#建立决策树模型预测花的种类
myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormula, data=trainData)
# 查看预测的结果
z<-table(predict(iris_ctree), trainData$Species)
#可以根据以上列联表求出预测的正确率---评估模型
#计算准确度
q<-sum(diag(z))/sum(z)
五、机器集成与随机森林法则
前面说过,决策树的一个特点是:弱分类器,分类不完全,需要利用集成投票的方式来增加精确度和稳健性。
机器集成算法:对于数据集训练多个模型,对于分类问题,可以采用投票的方法,选择票数最多的类别作为最终的类别,而对于回归问题,可以采用取均值的方法,取得的均值作为最终的结果。主要的集成算法有bagging和adaboost算法。
随机森林:随机森林就是利用机器集成多个决策树,主要有两个参数,一个是决策树的个数,一个是每棵树的特征变量个数。
随机森林特点:精确度高、稳健性好,但可解释性差。(可以知道各个变量的重要性)
R包实现机器集成算法:
#adabag包均有函数实现bagging和adaboost的分类建模
#利用全部数据建模
library(adabag)
a<-boosting(Species~.,data=iris)
z0<-table(iris[,5],predict(a,iris)$class)
#计算误差率
E0<-(sum(z0)-sum(diag(z0)))/sum(z0)
barplot(a$importance)
b<-errorevol(a,iris)#计算全体的误差演变
plot(b$error,type="l",main="AdaBoost error vs number of trees") #对误差演变进行画图
a<-bagging(Species~.,data=iris)
z0<-table(iris[,5],predict(a,iris)$class)
#计算误差率
E0<-(sum(z0)-sum(diag(z0)))/sum(z0)
barplot(a$importance)
b<-errorevol(a,iris)#计算全体的误差演变
plot(b$error,type="l",main="AdaBoost error vs number of trees") #对误差演变进行画图
#5折交叉验证
set.seed(1044) #设定随机种子
samp=c(sample(1:50,25),sample(51:100,25),sample(101:150,25)) #进行随机抽样
a=boosting(Species~.,data=iris[samp,]) #利用训练集建立adaboost分类模
z0<-table(iris[samp,5],predict(a,iris[samp,])$class)#训练集结果
z1<-table(iris[-samp,5],predict(a,iris[-samp,])$class)#测试集结果
E0<-(sum(z0)-sum(diag(z0)))/sum(z0)
E1<-(sum(z0)-sum(diag(z0)))/sum(z1)
a=bagging(Species~.,data=iris[samp,]) #利用训练集建立adaboost分类模
z0<-table(iris[samp,5],predict(a,iris[samp,])$class)#训练集结果
z1<-table(iris[-samp,5],predict(a,iris[-samp,])$class)#测试集结果
E0<-(sum(z0)-sum(diag(z0)))/sum(z0)
E1<-(sum(z0)-sum(diag(z0)))/sum(z1)
R包实现随机森林:
#随机森林法则
library(randomForest)
library(foreign)
data("iris")
#抽样数据
ind<-sample(2,nrow(iris),replace = TRUE,prob=c(0.7,0.3))
traning<-iris[ind==1,]
testing<-iris[ind==2,]
#训练数据
rf <- randomForest(Species ~ ., data=traning, ntree=100, proximity=TRUE)
#预测
table(predict(rf),traning$Species)
table(predict(rf,testing),testing$Species)
#查看预测的效果
print(rf)
plot(rf)
#查看重要性
importance(rf)
varImpPlot(rf)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16