
基于随机梯度下降的矩阵分解推荐算法
SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A、B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M。
矩阵分解推荐的思想就是基于此,将每个user和item的内在feature构成的矩阵分别表示为M1与M2,则内在feature的乘积得到M;因此我们可以利用已有数据(user对item的打分)通过随机梯度下降的方法计算出现有user和item最可能的feature对应到的M1与M2(相当于得到每个user和每个item的内在属性),这样就可以得到通过feature之间的内积得到user没有打过分的item的分数。
本文所采用的数据是movielens中的数据,且自行切割成了train和test,但是由于数据量较大,没有用到全部数据。
代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 9 19:33:00 2017
@author: wjw
"""
import pandas as pd
import numpy as np
import os
def difference(left,right,on): #求两个dataframe的差集
df = pd.merge(left,right,how='left',on=on) #参数on指的是用于连接的列索引名称
left_columns = left.columns
col_y = df.columns[-1] # 得到最后一列
df = df[df[col_y].isnull()]#得到boolean的list
df = df.iloc[:,0:left_columns.size]#得到的数据里面还有其他同列名的column
df.columns = left_columns # 重新定义columns
return df
def readfile(filepath): #读取文件,同时得到训练集和测试集
pwd = os.getcwd()#返回当前工程的工作目录
os.chdir(os.path.dirname(filepath))
#os.path.dirname()获得filepath文件的目录;chdir()切换到filepath目录下
initialData = pd.read_csv(os.path.basename(filepath))
#basename()获取指定目录的相对路径
os.chdir(pwd)#回到先前工作目录下
predData = initialData.iloc[:,0:3] #将最后一列数据去掉
newIndexData = predData.drop_duplicates()
trainData = newIndexData.sample(axis=0,frac = 0.1) #90%的数据作为训练集
testData = difference(newIndexData,trainData,['userId','movieId']).sample(axis=0,frac=0.1)
return trainData,testData
def getmodel(train):
slowRate = 0.99
preRmse = 10000000.0
max_iter = 100
features = 3
lamda = 0.2
gama = 0.01 #随机梯度下降中加入,防止更新过度
user = pd.DataFrame(train.userId.drop_duplicates(),columns=['userId']).reset_index(drop=True) #把在原来dataFrame中的索引重新设置,drop=True并抛弃
movie = pd.DataFrame(train.movieId.drop_duplicates(),columns=['movieId']).reset_index(drop=True)
userNum = user.count().loc['userId'] #671
movieNum = movie.count().loc['movieId']
userFeatures = np.random.rand(userNum,features) #构造user和movie的特征向量集合
movieFeatures = np.random.rand(movieNum,features)
#假设每个user和每个movie有3个feature
userFeaturesFrame =user.join(pd.DataFrame(userFeatures,columns = ['f1','f2','f3']))
movieFeaturesFrame =movie.join(pd.DataFrame(movieFeatures,columns= ['f1','f2','f3']))
userFeaturesFrame = userFeaturesFrame.set_index('userId')
movieFeaturesFrame = movieFeaturesFrame.set_index('movieId') #重新设置index
for i in range(max_iter):
rmse = 0
n = 0
for index,row in user.iterrows():
uId = row.userId
userFeature = userFeaturesFrame.loc[uId] #得到userFeatureFrame中对应uId的feature
u_m = train[train['userId'] == uId] #找到在train中userId点评过的movieId的data
for index,row in u_m.iterrows():
u_mId = int(row.movieId)
realRating = row.rating
movieFeature = movieFeaturesFrame.loc[u_mId]
eui = realRating-np.dot(userFeature,movieFeature)
rmse += pow(eui,2)
n += 1
userFeaturesFrame.loc[uId] += gama * (eui*movieFeature-lamda*userFeature)
movieFeaturesFrame.loc[u_mId] += gama*(eui*userFeature-lamda*movieFeature)
nowRmse = np.sqrt(rmse*1.0/n)
print('step:%f,rmse:%f'%((i+1),nowRmse))
if nowRmse<preRmse:
preRmse = nowRmse
elif nowRmse<0.5:
break
elif nowRmse-preRmse<=0.001:
break
gama*=slowRate
return userFeaturesFrame,movieFeaturesFrame
def evaluate(userFeaturesFrame,movieFeaturesFrame,test):
test['predictRating']='NAN' # 新增一列
for index,row in test.iterrows():
print(index)
userId = row.userId
movieId = row.movieId
if userId not in userFeaturesFrame.index or movieId not in movieFeaturesFrame.index:
continue
userFeature = userFeaturesFrame.loc[userId]
movieFeature = movieFeaturesFrame.loc[movieId]
test.loc[index,'predictRating'] = np.dot(userFeature,movieFeature) #不定位到不能修改值
return test
if __name__ == "__main__":
filepath = r"E:\学习\研究生\推荐系统\ml-latest-small\ratings.csv"
train,test = readfile(filepath)
userFeaturesFrame,movieFeaturesFrame = getmodel(train)
result = evaluate(userFeaturesFrame,movieFeaturesFrame,test)
在test中得到的结果为:
NAN则是训练集中没有的数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09