
数据挖掘核心算法之一--回归
回归,是一个广义的概念,包含的基本概念是用一群变量预测另一个变量的方法,白话就是根据几件事情的相关程度,用其中几件来预测另一件事情发生的概率,最简单的即线性二变量问题(即简单线性),例如下午我老婆要买个包,我没买,那结果就是我肯定没有晚饭吃;复杂一点就是多变量(即多元线性,这里有一点要注意的,因为我最早以前犯过这个错误,就是认为预测变量越多越好,做模型的时候总希望选取几十个指标来预测,但是要知道,一方面,每增加一个变量,就相当于在这个变量上增加了误差,变相的扩大了整体误差,尤其当自变量选择不当的时候,影响更大,另一个方面,当选择的俩个自变量本身就是高度相关而不独立的时候,俩个指标相当于对结果造成了双倍的影响 ),还是上面那个例子,如果我丈母娘来了,那我老婆就有很大概率做饭;如果在加一个事件,如果我老丈人也来了,那我老婆肯定会做饭;为什么会有这些判断,因为这些都是以前多次发生的,所以我可以根据这几件事情来预测我老婆会不会做晚饭。
大数据时代的问题当然不能让你用肉眼看出来,不然要海量计算有啥用,所以除了上面那俩种回归,我们经常用的还有多项式回归,即模型的关系是n阶多项式;逻辑回归(类似方法包括决策树),即结果是分类变量的预测;泊松回归,即结果变量代表了频数;非线性回归、时间序列回归、自回归等等,太多了,这里主要讲几种常用的,好解释的(所有的模型我们都要注意一个问题,就是要好解释,不管是参数选择还是变量选择还是结果,因为模型建好了最终用的是业务人员,看结果的是老板,你要给他们解释,如果你说结果就是这样,我也不知道问什么,那升职加薪基本无望了),例如你发现日照时间和某地葡萄销量有正比关系,那你可能还要解释为什么有正比关系,进一步统计发现日照时间和葡萄的含糖量是相关的,即日照时间长葡萄好吃,另外日照时间和产量有关,日照时间长,产量大,价格自然低,结果是又便宜又好吃的葡萄销量肯定大。再举一个例子,某石油产地的咖啡销量增大,国际油价的就会下跌,这俩者有关系,你除了要告诉领导这俩者有关系,你还要去寻找为什么有关系,咖啡是提升工人精力的主要饮料,咖啡销量变大,跟踪发现工人的工作强度变大,石油运输出口增多,油价下跌和咖啡销量的关系就出来了(单纯的例子,不要多想,参考了一个根据遥感信息获取船舶信息来预测粮食价格的真实案例,感觉不够典型,就换一个,实际油价是人为操控地)。
回归利器--最小二乘法,牛逼数学家高斯用的(另一个法国数学家说自己先创立的,不过没办法,谁让高斯出名呢),这个方法主要就是根据样本数据,找到样本和预测的关系,使得预测和真实值之间的误差和最小;和我上面举的老婆做晚饭的例子类似,不过我那个例子在不确定的方面只说了大概率,但是到底多大概率,就是用最小二乘法把这个关系式写出来的,这里不讲最小二乘法和公式了,使用工具就可以了,基本所有的数据分析工具都提供了这个方法的函数,主要给大家讲一下之前的一个误区,最小二乘法在任何情况下都可以算出来一个等式,因为这个方法只是使误差和最小,所以哪怕是天大的误差,他只要是误差和里面最小的,就是该方法的结果,写到这里大家应该知道我要说什么了,就算自变量和因变量完全没有关系,该方法都会算出来一个结果,所以主要给大家讲一下最小二乘法对数据集的要求:
1、正态性:对于固定的自变量,因变量呈正态性,意思是对于同一个答案,大部分原因是集中的;做回归模型,用的就是大量的Y~X映射样本来回归,如果引起Y的样本很凌乱,那就无法回归
2、独立性:每个样本的Y都是相互独立的,这个很好理解,答案和答案之间不能有联系,就像掷硬币一样,如果第一次是反面,让你预测抛两次有反面的概率,那结果就没必要预测了
3、线性:就是X和Y是相关的,其实世间万物都是相关的,蝴蝶和龙卷风(还是海啸来着)都是有关的嘛,只是直接相关还是间接相关的关系,这里的相关是指自变量和因变量直接相关
4、同方差性:因变量的方差不随自变量的水平不同而变化。方差我在描述性统计量分析里面写过,表示的数据集的变异性,所以这里的要求就是结果的变异性是不变的,举例,脑袋轴了,想不出例子,画个图来说明。(我们希望每一个自变量对应的结果都是在一个尽量小的范围)
我们用回归方法建模,要尽量消除上述几点的影响,下面具体讲一下简单回归的流程(其他的其实都类似,能把这个讲清楚了,其他的也差不多):
first,找指标,找你要预测变量的相关指标(第一步应该是找你要预测什么变量,这个话题有点大,涉及你的业务目标,老板的目的,达到该目的最关键的业务指标等等,我们后续的话题在聊,这里先把方法讲清楚),找相关指标,标准做法是业务专家出一些指标,我们在测试这些指标哪些相关性高,但是我经历的大部分公司业务人员在建模初期是不靠谱的(真的不靠谱,没思路,没想法,没意见),所以我的做法是将该业务目的所有相关的指标都拿到(有时候上百个),然后跑一个相关性分析,在来个主成分分析,就过滤的差不多了,然后给业务专家看,这时候他们就有思路了(先要有东西激活他们),会给一些你想不到的指标。预测变量是最重要的,直接关系到你的结果和产出,所以这是一个多轮优化的过程。
第二,找数据,这个就不多说了,要么按照时间轴找(我认为比较好的方式,大部分是有规律的),要么按照横切面的方式,这个就意味横切面的不同点可能波动较大,要小心一点;同时对数据的基本处理要有,包括对极值的处理以及空值的处理。
第三, 建立回归模型,这步是最简单的,所有的挖掘工具都提供了各种回归方法,你的任务就是把前面准备的东西告诉计算机就可以了。
第四,检验和修改,我们用工具计算好的模型,都有各种假设检验的系数,你可以马上看到你这个模型的好坏,同时去修改和优化,这里主要就是涉及到一个查准率,表示预测的部分里面,真正正确的所占比例;另一个是查全率,表示了全部真正正确的例子,被预测到的概率;查准率和查全率一般情况下成反比,所以我们要找一个平衡点。
第五,解释,使用,这个就是见证奇迹的时刻了,见证前一般有很久时间,这个时间就是你给老板或者客户解释的时间了,解释为啥有这些变量,解释为啥我们选择这个平衡点(是因为业务力量不足还是其他的),为啥做了这么久出的东西这么差(这个就尴尬了)等等。
回归就先和大家聊这么多,下一轮给大家聊聊主成分分析和相关性分析的研究,然后在聊聊数据挖掘另一个利器--聚类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15