
【金融数据】挖掘数据价值,打造智能银行
今天移动互联网正狂飙突进、网上购物平台和网上社交平台也方兴未艾,包括结构化数据、半结构化数据、非结构化数据的大数据爆炸式增长。早在2012年,大数据已经登上美国《纽约时报》的专栏封面,专栏称:“大数据时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析,而非基于经验和直觉。”目前银行业在开展业务过程中积累了海量高价值数据,很多银行的数据量级已经超过100TB,其中非结构化正以加速度形式积累。因此,不管传统银行业是拥抱还是抗拒,大数据时代已经呼啸而来。
开拓视野,深刻理解大数据运用的四个层次。研究表明,大数据通过层层晋升能够成为指导行动的智慧。概括地讲,大数据运用分为四个层次,第一层,数据收集与存储层,即基础层,各种类型的数据从不同渠道涌入,包括结构化数据(交易信息)、半结构化数据(日志信息)非结构化数据(多媒体、社交及定位信息等),在这个层面上,数据被实时和非实时地清理、加工,归档存储为有效数据,供后续分析运用。第二层,由数据上升到信息,形成信息整合层,在这个层面上需要对数据进行去噪和增强处理,实现关系型和非关系型信息的整合。第三层,从信息上升至知识,即知识发现层,在此层面,数据挖掘技术和人工智能至关重要,对整合的信息进行分解、提炼,从中找出有价值的信息点,实现信息到知识的转变。第四层,从知识上升到智慧,形成智慧汲取层,运用数据可视化工具,将经验、判断与知识相融合,使知识升华为智慧,为获取商业价值提供指导。
大数据正成为银行营销、创收和风控的利器
运用大数据构建客户全景视图,为客户制定差异化的产品及营销方案。通过大数据分析平台,接入客户通过社交网络、电子商务、终端媒介等方式形成的非结构化数据,包括客户的历史购买行为、年度消费水平、兴趣爱好、行为模式、社交圈及对媒体的响应等,这些外部大数据与银行的传统数据结合,就可以勾勒出真实完整的客户全景视图,之后实施针对性的产品设计和精准营销。比如,国外银行通过对客户的交易数据分析,推算出客户经历“人生大事”的大致节点,由于人生中这些重要时刻往往能够激发客户对高价值金融产品的购买,因此一些银行开始围绕客户的“人生大事”进行交叉销售。一家澳大利亚银行通过大数据分析发现,家中即将有婴儿诞生的客户对寿险产品的潜在需求最大。通过对客户银行卡交易数据分析,银行能够识别出即将添丁加口的家庭:在这些家庭,准妈妈会购买某些药品,与婴儿相关产品的消费会不断出现。这家银行为这类客户推出定制化的营销活动,获得了客户的积极回应,并大幅提高了交叉销售的成功率。
考核评价能力提升方面,智能管家的管理驾驶舱与集团客户管理功能使管理人员能够及时、准确地对机构、人员的绩效进行考核评价。考核评价是银行业务发展的指挥棒,是能否形成业务人员有效激励的关键。管理驾驶舱及时为管理人员提供创利、规模、风险、损益等八大维度核心指标信息,使管理人员对机构总体经营目标实现情况随时掌握。由于核心集团客户的综合创利、业务规模、风险状况对银行业绩举足轻重,因此,智能管家专门开发集团客户管理模块,使管理人员随时了解集团客户的规模、产品、创利、风险等关键指标,从而及时调整营销策略和授信政策。
大数据云端化
在金融集团层面上,民生银行已经建成对全行数据用户开放的阿拉丁大数据云平台是民生银行大数据应用的基础设施,使数据分析人员能够轻松、快速获取所需数据及分析结果。阿拉丁平台通过大数据的开放与共享,在民生银行内部形成各经营机构运用大数据“大众创业,万众创新”的良好生态。目前阿拉丁平台注册用户已覆盖民生银行所有分行和事业部,用户发布数据分析成果超过5000项。众多大数据应用成果中不乏精彩、成功的案例,比如,北京管理部基于大数据对小微客户进行信用评级,重庆分行通过客户通信、居住及出行大数据挖掘出潜在高价值客户等,这些大数据应用都显着改善了经营机构客户获取、产品营销、风险评级和运营管理,显示出阿拉丁云平台的强大功能。
工程实施路线图内容包括:分步建立关键基础数据标准以及关键指标标准;实现数据标准在重要业务系统中的落地应用;设计数据标准管理流程,依托数据标准管理系统和组织体系的建设,实现数据标准的系统化、规范化的管理。通过实施数据标准化工程,民生银行将打造一个专业、高效的数据标准化管理平台,数据标准管理在平台中通过工作流的方式实现。通过平台全行大数据用户能够快速获知数据标准的来源、标准的现状、标准与现实的映射以及重要业务标准的口径,真正实现全行关键数据的共享。
大数据移动化
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28