
数据挖掘技术在税务系统中的深度应用
随着计算机技术的发展和数据挖掘应用的逐渐成熟,数据挖掘技术引起了越来越多的行业的重视。在国外,政府应用数据挖掘技术发现欺诈行为已经有了30多年的历史,如今,中国的各类政府机关在信息化的进程中也都不约而同的将数据挖掘应用提到了议事日程上来。税务征管需要以更新、更便捷、更有效的方法,对大量的征管数据进行分析、提取、挖掘其隐藏信息数据中的潜能。本文着重介绍了通过数据挖掘技术如何实现纳税评估选案,从而降低征管成本,提高管理效果。
一、税务征管发展基本状况
我国和许多起他国家一样每年都会因为纳税人的偷漏税问题而损失大量的财政收入,有关税务部门一直以来都致力于解决这方面的问题。但是在没有引进计算机工具和数据挖掘工具技术之前,这方面的工作在很大程度上,是依赖专业的人员根据以往的工作经验和某些直觉上的判断来圈定那些不法纳税人的特征,虽然这在初期可能会有很大的帮助,但是随着税务体制的改革,经济的发展,自然而然的引起的税源的增加,税种的增加,这时,政府的税务管理部门在使用以往总结的凭经验和直觉判断的方法,去区分判断那些违法的纳税人,势必会导致产生以下问题:征管人员的增加,引起征管成本增大;选案的不科学性,引起征管效率低下;同时,对于个案检查过程中,由于没有证据来源,所以增加了个案的时间成本,而且往往是效果也不是十分明显。 以上种种问题表明,仅仅依赖定性的研究来辅助政府税务管理部门如何加大监管的工作力度已经出现了很多弊端,借鉴国外的成功经验,使用数据挖掘,对税务管理部门所辖的纳税户进行纳税评估选案的工作,将会大大提高监管工作的效率和工作的效果。当各个税收征管部门把税务信息化作为急待解决的问题时,而数据挖掘是实现信息化的必由之路。金税三期展开前后,税务部门都比较关注税务数据的深度利用和数据挖掘问题。
二、对数据挖掘深度利用的理解从目前应用平台的构建来看,有几点体会:首先,平台的构建必须结合具体的研究问题展开。通用性的平台虽然很好,但是由于前面所提到的数据可利用性和可计算性的原因,加上实际工作的紧迫性需求,往往使得通用性平台的规划会落空,甚至于进一步影响数据深度利用工作本身。
其次,考虑针对具体问题研究的通用性拓展。虽然实用为先,然而要做到持续性的数据利用,必然要考虑拓展的问题。在这个问题上,我们的平台通过税制表示方法、税收政策分析模型描述语言中国税收政策分析模型支持系统等方法进行尝试。
更为重要的是,对适合中国国情的税收经济模型的提出。由于长期以来的数据缺少原因,在我国模型建设方面没有进一步的探索。这种缺陷在海量的数据突然呈现在我们面前的时候更加突出。我们正在尝试提出适用干中国的税收经济模型,虽然肯定会比较艰难,但是这是一条必经之路。
最后,平台的研究必须以应用为导向。将平台应用到实际部门,可以最终检验平台的正确性,带来数据深度利用平台的可持续发展空间,体现出促进税收工作的真实效用,避免科研部门“孤芳自赏”的局面。
当然,在数据深度利用和挖掘过程当中,我们也碰到了其它一些问题,例如模型应用的技术性问题,包括数据调整、不同模型的评估和模型应用的不确定性等,还有如数据积累和维护体系、模型使用反馈机制、结果使用反馈机制等等问题。这些问题都需要我们在数据深度利用过程中加以关注和解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15