京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习需要哪些数学基础
过去的几个月中,有几人联系我,诉说他们对尝试进入数据科学的世界,以及用机器学习的技术去探索统计规律并构建无可挑剔的数据驱动型产品的热忱。然而,我发现一些人实际上缺乏必要的数学直觉和知识框架去得到有用的结果。这便是我决定写这篇博文的主要原因。最近涌现出了很多易于使用的机器学习和深度学习的软件包,例如 scikit-learn, Weka, Tensorflow 等等。机器学习理论是统计学、概率学、计算机科学以及算法的交叉领域,是通过从数据中的迭代学习去发现能够被用来构建智能应用的隐藏知识。尽管机器学习和深度学习有着无限可能,然而为了更好地掌握算法的内部工作机理和得到较好的结果,对大多数这些技术有一个透彻的数学理解是必要的。
为什么要重视数学?
机器学习中的数学是重要的,有很多原因,下面我将强调其中的一些:
1. 选择正确的算法,包括考虑到精度、训练时间、模型复杂度、参数的数量和特征数量。
2. 选择参数的设置和验证策略。
3. 通过理解偏差和方差之间的 tradeoff 来识别欠拟合与过拟合。
4. 估计正确的置信区间和不确定度。
你需要什么水平的数学?
当你尝试着去理解一个像机器学习(ML)一样的交叉学科的时候,主要问题是理解这些技术所需要的数学知识的量以及必要的水平。这个问题的答案是多维的,也会因个人的水平和兴趣而不同。关于机器学习的数学公式和理论进步正在研究之中,而且一些研究者正在研究更加先进的技术。下面我会说明我所认为的要成为一个机器学习科学家/工程师所需要的最低的数学水平以及每个数学概念的重要性。
1. 线性代数:我的一个同事 Skyler Speakman 最近说过,「线性代数是 21 世纪的数学」,我完全赞同他的说法。在机器学习领域,线性代数无处不在。主成分分析(PCA)、奇异值分解(SVD)、矩阵的特征分解、LU 分解、QR 分解、对称矩阵、正交化和正交归一化、矩阵运算、投影、特征值和特征向量、向量空间和范数(Norms),这些都是理解机器学习中所使用的优化方法所需要的。令人惊奇的是现在有很多关于线性代数的在线资源。我一直说,由于大量的资源在互联网是可以获取的,因而传统的教室正在消失。
2. 概率论和统计学:机器学习和统计学并不是迥然不同的领域。事实上,最近就有人将机器学习定义为「在机器上做统计」。机器学习需要的一些概率和统计理论分别是:组合、概率规则和公理、贝叶斯定理、随机变量、方差和期望、条件和联合分布、标准分布(伯努利、二项式、多项式、均匀和高斯)、时刻生成函数(Moment Generating Functions)、最大似然估计(MLE)、先验和后验、最大后验估计(MAP)和抽样方法。
3. 多元微积分:一些必要的主题包括微分和积分、偏微分、向量值函数、方向梯度、海森、雅可比、拉普拉斯、拉格朗日分布。
4. 算法和复杂优化:这对理解我们的机器学习算法的计算效率和可扩展性以及利用我们的数据集中稀疏性很重要。需要的知识有数据结构(二叉树、散列、堆、栈等)、动态规划、随机和子线性算法、图论、梯度/随机下降和原始对偶方法。
5. 其他:这包括以上四个主要领域没有涵盖的数学主题。它们是实数和复数分析(集合和序列、拓扑学、度量空间、单值连续函数、极限)、信息论(熵和信息增益)、函数空间和流形学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27