京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几招教你如何在R中获取数据进行分析
数据分析师干什么?数据分析师的主要职责包括寻找、检索、整理和传递从数据中来的见解。数据分析师也帮助报告和发现隐藏在数据潜在产品中的有意义的见解。从商业指标到用户行为和产品表现,他们负责获取、分析和报告范围的数据。
举个例子,职责可能涵盖:
书写查询从数据库中检索数据,和正确的利益相关者分享数据
浏览用户行为来寻找可以用来提升公司产品表现的见解或趋势
解释A/B测试的结果,基于此结果做出产品推荐
在有(或无)正规教育的情况下这样成为数据分析师
作为一名数据分析师,具有分析(数学/统计和编程)、沟通能力(展示/数据可视化)、注重细节地解决问题的系统化途径、和在商业文案中应用它们的能力等强大的组合能力。下面我们概述了一些你可以学习一些新技能的途径。
网上有许多公开的数据集——它们是很好的资源,提供给你机会去建立有趣独立项目的组合。我们在Mortar的朋友建立了一个主要列表,收录了从当今这个领域最好的知名的一些数据科学家那里找到的有趣数据集。
如果机器学习更符合你的风格,Kaggle竞赛会是一个磨练你的技能和自我提升的好舞台(一些公司招聘时搜索Kaggle排行榜)。
如果你想通过数据可视化展示你的发现,你可以在像Many Eyes、Plot.ly或Blocks.io的网站上创建并与其他人分享有趣的可视化。
想展示你的新技能和项目,你可以通过GitHub pages、WordPress、Medium或其他网页或个人博客平台创建的网站来展示。
能使你获得面试的技能组合
优秀的技能组合应该展现一系列项目和你学过的技能范围
完美地,这些项目要展示你的:
在R语言、Pandas、Numpy、Scipy、Scikit-Learn包或者相关数据分析工具方面的实践经历
使用和整理大规模(太大而难以适合一个电子表格)、不相干的和(或)非结构化数据集的经历
机器学习和数据挖掘技术的知识
强大的问题解决、数学、统计和定量推理的技能
最重要的,这些项目应该展示你出色的沟通能力。特别地,显示你能分析复杂数据集,寻找有趣的见解,用正确的商业文案清晰而简洁地展示它们。
数据分析师的概念
视频:数据科学家是什么
了解数据科学家应该具有的能力。
视频:机器学习和无人驾驶汽车
了解谷歌的无人驾驶汽车怎样运用机器学习。
视频:模仿因子怎么通过Facebook传播
了解模仿因子和它们怎样在社交媒体中传播
视频:什么是
了解它是什么意思和它怎样用于数据分析。
以什么顺序学习?
技能
如果你有兴趣成为数据科学家,你应该在日常工作中胜任和能够运用以下技能。
编程
作为数据分析师,具有编程能力很重要。曾经很多次你使用过非编程工具,如Excel,但是最好和最常用的一些工具,如Pandas、Numpy,以及其他一些库,都是基于编程的。使用这些基于编程的工具,你能够做更深入、更高效的分析。由于流行度高,Python和R都是很好的入门编程语言。
统计学
最低要求,你应该能理解基本的统计描述和统计推断。你应该理解分布的不同类型,哪种统计检验适用于哪种文本,还要能够在面试中解释线性回归的基础知识。
机器学习
如果你有大量数据,机器学习中的技术是难以置信的强大。你需要用这些数据去预测未来,或者给出合适的建议。你应该懂得一些最常用的监督学习和非监督学习的算法(他们是两种不同类别的机器学习算法),比如k最近邻算法、支持向量机和k均值聚类。你可能不必懂得这些算法背后的理论和实现细节,但知道什么时候使用这些算法很重要。
数据清理
在理想的世界里,你面对的数据集是干净的、准备好进行分析的。然而,现实世界中,绝少是这样的。你的数据集很可能缺失数值、格式错误、或者输入错误。例如,让我们讨论一些日期,一些系统表示2014年9月1日为9.1.2014,其他一些系统会表示为09/01/2014。像这样的情况,你的数据清理技能会派上用场。
沟通和数据可视化
作为数据分析师,你的工作不仅要解释数据,还要同其他利益相关者高效交流你的发现,这样你就能帮他们做出数据提供的决策。许多利益相关者不会对你的分析背后的技术细节感兴趣,这就是为什么你能通过易于理解的途径交流和展示你的发现很重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23