京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA LEVEL II Python专题开课倒计时,你从未见过的_用Python玩转数据挖掘!
Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和C++更彻底。 作为一种通用语言,Python几乎可以用在任何领域和场合,角色几乎是无限的,Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事情”。下面这些公司都在使用Python完成各种各样的任务,国内:豆瓣、搜狐、腾讯、网易、百度、阿里、淘宝、新浪…; 国外:谷歌、NASA、YouTube、Facebook…
一、 课程安排
时间:2016年7月16-17日,23-24日 ,30-31共六天
地点:北京&直播,CDA数据分析研究院
费用:现场班5900元,远程班4400元
授课安排:
(1) 授课方式:面授形式,中文多媒体互动式授课方式
(2) 授课时间:上午9:00-12:00,下午13:30-16:30,16:30-17:00(答疑)
(3) 学习期限:现场与视频结合,长期学习加练习答疑。
二、 授课大纲
|
第一讲 1.1 Python入门,Anaconda安装 1.2 Python数据类型、数据语法、运算符 |
第二讲 2.1 函数、模块、异常与文件处理 2.2 函数与重要Python包 2.3 数据挖掘常用包介绍 |
|
第三讲 3.1 特征变量选择:主成分和因子等 3.2 样本聚类 3.3 案例1:汽车类型聚类与地域购买偏好分析 |
第四讲 4.1 决策树模型 4.2 模型验证+组合算法 4.3 案例2:电信离网用户预警 |
|
第五讲 5.1 最近邻域法(KNN)、MBR、样条曲线 5.2 线性回归与岭回归、可实现的Lasso算法 5.3 案例3:婚恋网站被约会可能性预测 案例4:零售业客户价值预测模型 |
第六讲 6.1 逻辑回归;广义线性模型 6.2 支持向量机 6.3 案例5:新闻内容分类 |
|
第七讲 7.1 文本分析流程概述 7.2 常用字符串函数与正则表达式 7.3 分词与词频统计 7.4 案例6:新闻内容分类 案例7:构造新闻热点词指数 |
第八讲 8.1 社会网络分析 8.2 案例8:电信客户交友圈与流失预警 案例9:电信再入网 |
三、 讲师介绍
王小川,同济大学管理学博士,MATLAB技术论坛管理团队核心成员,证券从业人员。现就职于国内某大型券商研究所,从事量化投资相关工作,并承担了部分高校统计课程教学任务。长期研究机器学习在统计学中的应用,精通MATLAB、Python、SAS、SPSS等统计软件,热衷数据分析和数据挖掘工作,有着扎实的理论基础和丰富的实战经验。著有《MATLAB神经网络30个案例分析》一书。
赵仁乾,北京邮电大学管理科学与工程硕士,现就职于北京电信规划设计院,从事移动、联通集团及各省分公司市场业务财务规划、经济评价及运营咨询。重点研究方向包括离网用户挖掘、市场细分与精准营销、移动网络价值区域分析、潜在价值客户挖掘等。
于小洋,中山大学计算机系硕士,百度股市通主要开发人员。原百度大数据研发工程师,现美团数据挖掘工程师。主攻大数据与文本分析。
四、 学员对象
1)各行业数据分析、数据挖掘从业者
2)金融、电信、零售、医学等各行业业务数据分析人员
3)政府事业单位大数据及数据挖掘项目人员
4)数据挖掘岗位就业、提拔涨薪、技能优化等从业人员
5)对数据挖掘感兴趣的各界人员
五、 课程优惠
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件);
2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠;
3. 论坛其他课程老学员9折优惠.
六、 学员基础要求
1)掌握CDA LEVEL I 大纲要求
2)报名赠送《PYTHON初级视频》,提前观看视频做好预习工作。
七、 关于证书
此证书为CDA等级认证证书中英文双证,此证书为CDA数据分析师证证书,可以作为企业事业单位选拔和聘用专业人才的任职参考依据。)
八、 报名流程
1. 在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25