京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用Google BigQuery做入门级大数据分析
大数据项目是比较繁琐的,特别是涉及到配置和管理Hadoop集群。如果你对SQL比MapReduce更熟悉,而关系型数据库尚不能满足你的分析需求,那么可以考虑使用Google的BigQuery,它提供了大数据分析入门级方法。
BigQuery降低了分析大数据集所面临的一些实施困难。它的定价模式很具吸引力,你可以从样本数据中获取有用信息,而不用对完整的数据集做分析。
有时候,处理大数据的一些手段相当于是用精确度换速度。例如,如果你想判断两组客户浏览网站的路径是否有差异,你可以分析该站点上所有相关客户活动的每个日志入口。当然,你也可以抓取客户群的子集(也就是部分客户信息),在样本数据中分析差异。基本的统计可以为你提供理解这类分析错误率的手段,只要差错在可接受范围内,你得出的答案就足够你决策用了。
这种交换可以通过TOP函数得到,该函数返回分组和排序操作中的前几行。返回结果可能比较近似,但是该函数通常比使用“group by”、“order by” 、“limit”相结合的从句要更快速。
Google BigQuery特性
BigQuery是专门为分析上亿行级的数据而设计的,使用类似SQL的语法即可操作。它并不是SQL数据库的替代品,而且不适合事务处理应用。BigQuery支持交互风格的分析,你可以使用“SELECT”语法编写查询,这对任何SQL开发者来说都是再熟悉不过的了。
查询语言包括支持标准操作,比如连接、排序和分组,以及与嵌套数据结构使用操作符。BigQuery也支持聚合函数,比如计数、求和、求平均值、求方差和标准差。分组函数和描述性统计的相结合,使得比较两个群体之间的方法和方差相对更直接一些。
在正常的数据模型中,连接是必不可少的操作,但是可能产生高昂的计算代价。BigQuery函数中的“JOIN”连接操作符与SQL连接类似,但是在连接两个表时,其中一个表的大小必须可以压缩为8MB或更小。这种限制支持实现更有效率的连接操作,因为较小的表可以更有效率地缓存,并连接较大的表。如果你必须连接两个较大的表,你可以使用JOIN EACH操作,但是估计性能会很差。
你可以使用简单的浏览器界面与BigQuery交互。浏览器工具会保留查询历史并提供方便构造查询的工作空间。这是一个很简单很基础的工具,它并没有其他SQL开发工具中的完整功能特性,比如MySQL Workbench或者DBVisualizer。当然,你还可以使用命令行接口。
Google BigQuery的定价模式
Google的定价模式是基于存储数据量和待分析数据量而建立的。存储量价格是每月每GB数据0.12美元。交互式查询处理每GB数据收费0.035美元,批量查询处理每GB数据时0.02美元。要想限制处理的数据量,你可以限制你分析的行数,并且只获取实际需要的字段列作为结果返回。BigQuery采用列式数据存储,所以在查询一列或多个列时,不会提取整行中的所有数据。
数据是通过加载任务载入BigQuery,加载任务可以使用Google云存储中的数据,或者也可以从本地文件系统中获取使用“POST”请求传输。文件格式化为CSV或者JSON格式。压缩文件的大小被限制在1GB之内,但是未压缩文件可以达到1TB。加载任务可以包含多达一万个文件,但是所有文件加起来大小不能超过1TB。因为你每天每个表执行的加载任务可以高达一千个,所以这些限制对绝大多数项目来说是没有实际影响的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26