
大数据基本概念及技术_数据分析师考试
大数据是当前很热的一个词。这几年来,云计算、继而大数据,成了整个社会的热点,不管什么,都要带上“大数据”三个字才显得时髦。大数据究竟是什么东西?有哪些相关技术?对普通人的生活会有怎样的影响?我们来一步步弄清这些问题。
一、基本概念
在讲什么是大数据之前,我们首先需要厘清几个基本概念。
1.数据
关于数据的定义,大概没有一个权威版本。为方便,此处使用一个简单的工作定义:数据是可以获取和存储的信息。
直观而言,表达某种客观事实的数值是最容易被人们识别的数据(因为那是“数”)。但实际上,人类的一切语言文字、图形图画、音像记录,所有感官可以察觉的事物,只要能被记下来,能够查询到,就都是数据(data)。
不过数值是所有数据中最容易被处理的一种,许多和数据相关的概念,例如下面的数据可视化和数据分析,最早是立足于数值数据的。
传统意义上的数据一词,尤其是相对于今天的“大数据”的“小数据”,主要指的就是数值数据,甚至在很多情况下专指统计数值数据。这些数值数据用来描述某种客观事物的属性。
2.数据可视化
对应英语的data visulization(或可译为数据展示),指通过图表将若干数字以直观的方式呈现给读者。比如非常常见的饼图、柱状图、走势图、热点图、K线等等,目前以二维展示为主,不过越来越多的三维图像和动态图也被用来展示数据。
3.数据分析
这一概念狭义上,指统计分析,即通过统计学手段,从数据中精炼对现实的描述。例如:针对以关系型数据库中以table形式存储的数据,按照某些指定的列进行分组,然后计算不同组的均值、方差、分布等。再以可视化的方式讲这些计算结果呈现出来。目前很多文章中提及的数据分析,其实是包括数据可视化的。
4.数据挖掘
这个概念的定义也是众说纷纭,落到实际,主要是在传统统计学的基础上,结合机器学习的算法,对数据进行更深层次的分析,并从中获取一些传统统计学方法无法提供的Insights(比如预测)。
简单而言:针对某个特定问题构建一个数学模型(可以把这个模型想象成一个或多个公式),其中包含一些具体取值未知的参数。我们将收集到的相关领域的若干数据(这些数据称为训练数据)代入模型,通过运算(运算过程称为训练),得出那些参数的值。然后再用这个已经确定了参数的模型,去计算一些全新的数据,得出相应结果。这一过程叫做机器学习。
机器学习的算法纷繁复杂,最常用的主要有回归分析、关联规则、分类、聚类、神经网络、决策树等。
二、大数据和大数据分析
大数据首先是数据,其次,它是具备了某些特征的数据。目前公认的特征有四个:Volumne,Velocity,Variety,和Value,简称4V.
1.Volume:大量。就目前技术而言,至少TB级别以下不能成大数据。
2.Velocity:高速。1TB的数据,十分钟处理完,叫大数据,一年处理完,就不能算“大”了。
3.Variety:多样。就内容而言,大数据已经远远不局限数值,文字、图片、语音、图像,一切在网络上可以传输显示的信息,都属于此列。从结构而言,和存储在数据库中的结构化数据不同,当前的大数据主要指半结构化和非结构化的信息,比如机器生成信息(各种日志)、自然语言等。
4. Value:价值。如果不能从中提取出价值,不能通过挖掘、分析,得到指导业务的insights,那这些数据也就没什么用。不过现在还有另外一种提法:只要是数据就都有用,能不能获得价值,是分析人员的能力问题。
大数据分析,顾名思义,就是将前述的数据可视化、数据分析、数据挖掘等方法作用到大数据之上。
从某种意义上讲,大数据可谓机器学习的福音,很多原有的简单粗糙的机器学习模型,仅仅因为训练数据量级的增加就大幅提高了准确性。还有一些模型则因为准确性随着数据量增加而增加的势头尤其明显,得以脱离默默无闻而被广泛使用。
另一方面,大数据分析对于运算量的需求激增,原有的基于单机的运算技术显然已经不能满足需求,这就催生了一些列新技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18