
使用过Python的用户都会被其简洁、易读、强大的库所折服,其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。
在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是python是一门高级语言,其生产效率更高,时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。
4月29-5月1日北京基于Python的数据分析现场班
三天的课程力图结合不同案例讲授数据分析领域基本知识。
这门课使用python作为载体, 结合理论知识进行实际操作, 使学生不仅理解数据分析的基本方法, 同时掌握使用python的基本实际计算技能。
培训时间:2018年4月29-5月1日 (三天)
培训地点:北京市海淀区丹龙大厦附近
授课安排:上午9:00至12:00; 下午1:30至4:30; 答疑
培训费用:3000元 / 2600元 (仅限全日制本科生及硕士研究生优惠价);食宿自理
Python讲师介绍:
张忠元, 2008年在中科院数学与系统科学研究院获理学博士学位,现任中央财经大学统计学院教授,博士生导师,也是中国计算机学会高级会员、果壳网科学顾问。主业是数据分析, 尤其是复杂网络分析,主要讲授回归分析、运筹学、数学分析等课程。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery, Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery, Physica A, Management Science等著名期刊的匿名审稿人。
Python课程导引:
近年来公众越来越关注大数据和数据分析,随着互联网和人工智能的快速发展,许多问题都可以通过数据分析加以研究, 为决策提供更坚实的依据.
本次三天的课程力图结合不同案例讲授数据分析领域基本知识.
这门课使用Python作为载体,结合理论知识进行实际操作,使学生不仅理解数据分析的基本方法,同时掌握使用Python的基本实际计算技能.
在内容的安排上,我们遵循由浅入深,循序渐进的思路,结合实际应用展开讲解.
内容包括python的基本用法、有监督学习、无监督学习、关联规则、特征工程、推荐系统、时间序列分析、孤立点探测、回归和方差分析、复杂网络分析和数据可视化.
Python课程大纲:
第1讲(3小时)
Python编程基础知识, 包括基本数据类型, 基本编程结构, 函数, 脚本文件, 数据分析的常用模块.
第2讲(3小时)
有监督学习, 包括kNN方法, 支持向量机, 随机森林和神经网络.
无监督学习, 包括kmeans, 谱聚类, DBSCAN, 非负矩阵分解和双聚类.
关联规则.
第3讲(3小时)
推荐系统.
时间序列分析.
孤立点探测.
第4讲(3小时)
统计学的基本思想和常见误用.
描述性统计.
回归和方差分析.
非参数统计.
第5讲(3小时)
复杂网络分析,包括复杂网络的建模、复杂网络的拓扑结构分析和复杂网络的功能分析.
第6讲(3小时)
案例:通过对包括美国肥胖数据分析、信用卡欺诈数据分析、英超赛季表现分析和脸书社交数据分析等至少四个案例的讲解综合展示数据分析方法的使用.
优惠:
现场班老学员9折优惠;
同一单位3人以上同时报名9折优惠;
折扣优惠不叠加。
报名流程:
1:点击“http://www.peixun.net/main.php?mod=buy&cid=1201”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:进入结算中心,通过订单支付;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
联系方式:
魏老师
Tel: 010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11