
使用过Python的用户都会被其简洁、易读、强大的库所折服,其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。
在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是python是一门高级语言,其生产效率更高,时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。
4月29-5月1日北京基于Python的数据分析现场班
三天的课程力图结合不同案例讲授数据分析领域基本知识。
这门课使用python作为载体, 结合理论知识进行实际操作, 使学生不仅理解数据分析的基本方法, 同时掌握使用python的基本实际计算技能。
培训时间:2018年4月29-5月1日 (三天)
培训地点:北京市海淀区丹龙大厦附近
授课安排:上午9:00至12:00; 下午1:30至4:30; 答疑
培训费用:3000元 / 2600元 (仅限全日制本科生及硕士研究生优惠价);食宿自理
Python讲师介绍:
张忠元, 2008年在中科院数学与系统科学研究院获理学博士学位,现任中央财经大学统计学院教授,博士生导师,也是中国计算机学会高级会员、果壳网科学顾问。主业是数据分析, 尤其是复杂网络分析,主要讲授回归分析、运筹学、数学分析等课程。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery, Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery, Physica A, Management Science等著名期刊的匿名审稿人。
Python课程导引:
近年来公众越来越关注大数据和数据分析,随着互联网和人工智能的快速发展,许多问题都可以通过数据分析加以研究, 为决策提供更坚实的依据.
本次三天的课程力图结合不同案例讲授数据分析领域基本知识.
这门课使用Python作为载体,结合理论知识进行实际操作,使学生不仅理解数据分析的基本方法,同时掌握使用Python的基本实际计算技能.
在内容的安排上,我们遵循由浅入深,循序渐进的思路,结合实际应用展开讲解.
内容包括python的基本用法、有监督学习、无监督学习、关联规则、特征工程、推荐系统、时间序列分析、孤立点探测、回归和方差分析、复杂网络分析和数据可视化.
Python课程大纲:
第1讲(3小时)
Python编程基础知识, 包括基本数据类型, 基本编程结构, 函数, 脚本文件, 数据分析的常用模块.
第2讲(3小时)
有监督学习, 包括kNN方法, 支持向量机, 随机森林和神经网络.
无监督学习, 包括kmeans, 谱聚类, DBSCAN, 非负矩阵分解和双聚类.
关联规则.
第3讲(3小时)
推荐系统.
时间序列分析.
孤立点探测.
第4讲(3小时)
统计学的基本思想和常见误用.
描述性统计.
回归和方差分析.
非参数统计.
第5讲(3小时)
复杂网络分析,包括复杂网络的建模、复杂网络的拓扑结构分析和复杂网络的功能分析.
第6讲(3小时)
案例:通过对包括美国肥胖数据分析、信用卡欺诈数据分析、英超赛季表现分析和脸书社交数据分析等至少四个案例的讲解综合展示数据分析方法的使用.
优惠:
现场班老学员9折优惠;
同一单位3人以上同时报名9折优惠;
折扣优惠不叠加。
报名流程:
1:点击“http://www.peixun.net/main.php?mod=buy&cid=1201”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:进入结算中心,通过订单支付;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
联系方式:
魏老师
Tel: 010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30