
【连载5】如何用spss做加权最小二乘回归及岭回归
上一节我们讲到一般多元线性回归的操作方法。本节要介绍的是多元线性回归的其他几种情况。包括适用于含有加权变量的加权最小二乘回归方程等。然后继续讨论上一节中没有讨论完毕的如何解决多重共线性这个问题。
讲加权最小二乘回归之前,我们首先还是举个例子。假设我们想考察全国三十一个省的某种疾病的发病率和每个省的面积,平均气温等的关系,那么我们知道,这三十一个省的人口肯定是不同的。而且差距还蛮大。并且最重要的,我们知道,发病率的高低很可能和人口的多少有关系(考虑传染性,人口密度什么的),那么这个时候我们直接用最小二乘回归就不是那么合适了,我们更好的选择是加权最小二乘回归法。也就是说,当样本和某一个权数存在某种关系的时候,我们就用加权最小二乘回归。
在上一节中我们提到过在线性回归主面板最下边有一个WLS权重框框。在加权最小二乘回归方法里边,我们就要用到这个框框了。我们在设置变量的时候除了自变量和因变量,还要设置一个权数变量(在上述的医学例子里,这个变量可以是每个省的人口。在其他一些金融案例里边,比方研究高价股票和低价股票的波动时,由于这两种股票在其他因素相同时的波动幅度不同,因此需要设一个权数,这个权数可能就是自己设定的了。)然后我们把这个权数变量选入到WLS权重框里边。其他过程和一般线性回归一致。
解释结果的时候也和一般线性回归类似,只是有一个小小的地方需要大家注意一下。我们知道,模型汇总表里边的决定系数是一个比较重要的参考数据。它会告诉你你的方程能解释你的模型的百分之多少,从而从侧面考察了你的方程的合理性。但是不幸的是,这个决定系数在加权线性回归里边出现了比较严重的偏差。这个和决定系数的计算方法有关系。因此假如我们用同样的数据做一遍加权的回归,和一遍不加权的回归,往往会发现不加权的方程决定系数大于加权的。但是这个并不能代表不加权的方程就一定比加权后的准确。实际上加权以后的模型和不加权的模型到底孰优孰劣,好的那个方程又能好多少,这些问题spss都不能给出直接的数据。因此在使用加权最小二乘回归的时候应当格外谨慎。
此外,由于有时候权重并不特别明确,(比如上边那个金融的案例),这时候可以使用分析——回归——权重估计这个选项。这个选项的主面板和回归分析主面板类似,自变量,因变量,权重。变量选择的方法和上边的加权回归也类似。这个方法也需要你事先给出一个大概的权重变量,然后系统会做一定的调整来使方程达到最佳效果。结果解释等也类似,就不赘述了。
除了加权回归以外,还有一个比较特别的线性回归是曲线参数估计。
如果你的线性模型拟合的不是那么理想,那么你的模型很可能就是曲线型的(尤其是你有两个变量的时候,线性模型有时候会非常糟糕)。需要打开分析——回归——曲线估计,选择你的因变量,自变量。此外下边还有十一种模型供你选择。选好以后,结果会给出每种模型的决定系数,F值,P值,你可以从这些数据中判断哪个方程最适合你的模型。
当然,这个不会给出你非常详细的数据。如果你还想要看更详细的数据,比如方程中每个参数的P值什么的,你最好还是用线性回归做一下。啊,当然,当然,你的数据肯定是没办法直接做线性回归的,不然也就不用做曲线估计了。你需要首先转换你的数据。举个例子:Y=X1^2*a1+X2^2*a2……,假设你的模型做出来符合这种形式。那你首先要在数据——计算新变量里边,计算出新变量x1的方,x2的方,然后在做这两个新变量和因变量的一般线性回归。当然,如果你想要在方程的自变量里在加一个x1和x2的积,你也可以这么加上去。
那么除了logistic回归以外,线性回归的内容基本就完毕了。下边我们继续讨论一个问题:如何消除自变量间的共线性?
上一节里边提到,如果VIF(方差因子膨胀率)合格,而DW不合格的话,我们可以使用广义差分法来改善DW,得到好的模型。那这一节,我们就来讨论一下VIF不合格的情况。我们已经知道,如果VIF不合格的话,说明自变量存在严重的共线性。在回归的范畴里边,通常有三种方法可以解决这个问题。他们分别是偏最小平方回归,岭回归,路径分析。
偏最小平方回归对于初学者来讲,是一个并不常用的回归方法。如果想用这个分析的话,需要额外下载相关模块。下好相关模块以后,打开分析——回归——部分最小回归,(如果没有下载相关模块的话,他会提示你下载),打开主面板,这是一个相当简单的面板,选好自变量,因变量之后,点确定就可以。结果会呈现四个表,也并不难判断。就不赘述了。
岭回归可以下载相关模块,也可以自己编程来实现。大部分人都会选择后一种方法。这个主要是因为代码很简洁,很容易编写。代码如下:
INCLUDE’d:\spss20.0\Ridge Regression.sps’.
Ridgereg enter=X1 X2 X3
/dep=y
诺,就这么三行。第一行单引号里边填写你的spss安装目录。比如我的按在d盘下面,所以我就填d:\spss20.0,如果你的按在c盘,那就填C盘呗。然后目录后边那个ridge regression,是最小二乘平方的宏的调用。然后第二行X1,X2,X3的位置填写你的自变量的名字。有几个就填几个。中间用空格隔开。第三行y的位置填你的因变量。运行的时候,打开文件——新建——语法,进入语法编辑器窗口,输入上边的代码,然后点运行——全部就可以了。结果会有一个系数表,这个表的第一列是K值,第二列是决定系数,第三列往后是你的自变量。其中k值会从0开始增大,同时决定系数也会慢慢变小,最终趋于稳定。(岭回归舍弃了一定的信息,从而改善了多重共线性)要从这张表里边选取合适的k值,使决定系数尽量大,同时尽量稳定。选好k值就可以参照系数写出方程了。此外在岭回归里边是不会输出常数的。这也是和一般回归方法的一个不同之处。
岭回归和偏最小平方回归比较而言,岭回归的优势在于容易操作。偏最小平方回归的优势在于可以用于例数很少的情况。如果例数很少,自变量又很多,甚至例数都少于自变量的数目,那么就一定要用偏最小平方回归了。额,通常在金融领域不会发生这种情况,但是在一些特殊的领域,医学啊什么的,则是有可能发生的。因此在某种程度上来讲,偏最小平方回归是给特殊需要的人使用的。
最后补充介绍一下路径分析。如果说前边两种方法都是从过程中实现的话,那么路径分析就是从专业角度来刻画方程了。举个例子,比如你想看看一朵鲜花的开放时间和阳光强度,空气湿度,空气温度,日照时间等等的关系,做出分析来一看,存在共线性。如果你是专业人员,那么很可能你就知道,由于空气温度受到阳光强度,和日照时间的影响,所以你的方程就存在了共线性。所以呢,你就能写出一个空气温度,阳光强度,日照时间之间的一个回归方程。然后你就能画出一个路径图,代表阳光强度的圈圈不仅直接影响了花朵开放时间,而且还影响了空气温度,从而间接影响了花朵开放时间,并且你还能写出彼此之间的影响系数。这就是路径分析的主要内容。
当然路径分析需要有专业知识的人来做。并且呢,通常需要经过许多尝试,才能正确的写出因变量和自变量之间的方程。而且,最重要的是,路径分析只能帮助我们搞清楚自变量之间到底存在怎么样的共线性,对于矫正方程没有什么作用。也就是说,方程的决定系数可能依然很糟糕。所以它更多的是用来做演示图或者什么的,对于改善多重共线性真的没什么用。
解决多重共线性的常见方法可以告一段落了。在非线性回归,分类回归之后我们介绍因子分析时将会旧话重提,再次讨论多重共线性的问题。CDA数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19