京公网安备 11010802034615号
经营许可证编号:京B2-20210330
说到建模分析师,你可能会臆想到的形象是怎样的?数据民工?金融精英?公司牛人?
他的发型可能是:
秃头
无刘海蓬松长发
他的装束大概是:
双肩背包(你的背包,背到现在还没烂)
运动鞋(竹杖芒鞋轻胜马,谁怕,一蓑烟雨任平生)
他的形象兴许是:
数据民工,励精图治。
数据精英,功成名遂。
数据前辈,德高望重。
那么走进建模分析师的工作,看看他们都在干什么吧。
如果你是SAS的忠实用户,身处银行、医药、电信等大型行业,你可能会接触到
信用卡违约预测之监测
如果你正在为万达做电影推荐系统,钟爱SPSS Moderler,你可能会构建
基于电影系统的关联推荐模型
如果你身处互联网行业,善于使用R语言,专注于CRM客户关系管理,你涉及的课题可能是:
客户管理管理与生命周期
最后,让我们来看看,企业BOSS们对建模分析师都有哪些要求呢?
以下标准取自猎聘网对建模分析师的共性要求整理所得,仅供参考:
硬性:
1. 学历背景:统招本科学历以上,数学/统计学/金融工程/计算机专业背景优先
2. 技能:熟练掌握SAS/SPSS/Python/R等至少一种工具,必须会SQL;
软性:
1. 工作经历:2~3年各行业建模分析工作经验;
2. 商业思维:具有较好的商业感觉和逻辑推理能力,善于从商业角度解读数据,有创造性思维和较强的学习能力,能推动数据分析结果落地。
那么,有没有什么捷径可以让我们更快速的成为建模分析师吗?
答案是:CDA LEVEL II建模分析师,四个专题,皆为大牛!带你快速入门建模分析师,体验不一样的数据挖掘!
【报名流程】
1. 在线填写报名信息
https://www.cda.cn/kecheng/4.html
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
SPSS Modeler专题
北京:2016年7月29-31,8月05-07日
上海:2016年10月21-23,28-30日
深圳:2016年9月16-18,23-25日
主题
以企业场景、真实案例教学方式,利用SPSS MODELER来贯穿数据挖掘建模的整个内容,包括基础、算法、建模、进阶、模型优化、应用等。
应用范围
《营销活动及信用风险控制》 《企业如何处理原始数据》 《如何根据业务选取有效变量》 《如何建立交叉销售模型》 《如何建立信用评分模型》 《如何进行模型优化》 《企业如何建立预测模型》 《客户分群精准化营销》
算法理论
KDD、CRISP DM—数据处理—统计检验—决策树、罗吉斯回归、包装法—贝氏网络—神经网络—支持向量机—随机森林—聚类分析—关联分析—序列分析
案例操作
【营销客户分群】【银行风险预测】【网站行为关联分析】【商品关联规则】【交叉销售】【客户流失预警】【天气预测】【药物治疗】【疾病诊断】【零售购物篮组合】【银行金融产品序列分析】
SAS专题
北京:2016年8月06-07,13-14,20-21日
上海:2016年8月13-14,20-21,27-28日
主题
以SAS为工具,讲解SAS软件中高级编程技术,并运用SAS进行数据挖掘流程化操作。
应用范围
《银行、证券等金融企业》《大型零售企业》《通信行业》《医疗行业》
软件技术
《SAS基础编程》《SAS数据管理》《SAS编程进阶》《SAS与SQL》《SAS宏语言》《程序优化》
算法理论
案例操作
【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】
PYTHON专题
北京:2016年9月03-04,10-11,16-17日
主题
以PYTHON为工具,讲解PYTHON软件数据挖掘编程技术,并运用PYTHON
应用范围
《互联网企业》《网站分析》《网络产品与运营》《其他》
软件技术
《PYTHON语法基础》《PYTHON数据挖掘包》《主成分与因子分析》《聚类分析》《预测分析》《文本分析》《社会网络分析》
算法理论
线性回归与岭回归--可实现的Lasso算法--Logistic回归--广义线性模型--最近邻域法(KNN)--样条曲线--决策树--随机森林--支持向量机--线性判别模型--主成分分析PCA--样本聚类--关联规则与序贯分析
案例操作
【汽车类型聚类与地域购买偏好分析】【婚恋网站被约会可能性预测】【零售业客户价值预测模型】【新闻内容分类】【构造新闻热点词指数】【电信客户交友圈与流失预警】
R语言专题
北京:8月06-07,13-14日,20-21日(6天)
广州:8月06-07,20-21日,27-28日(6天)
主题
以R为工具,讲解R语言软件数据挖掘编程技术,并运用R
应用范围
《学术界》《客户预测与客户流失》《信用违约建模》《银行金融业》
软件技术
《R常用包》《R语言编程》《预测模型》《降维》《分类模型》《样本聚类》
算法理论
朴素贝叶斯--决策树--KNN--逻辑回归--神经网络--SVM--岭回归--Lasso算法--装袋法--Adaboost算法--主成分分析PCA--K-means--谱聚类--密度聚类--关联规则--序列模式
案例操作
【制作经营业务BI常用图表】【婚恋网站是否可以成功约会预测】【客户流失预测】【零售业客户价值预测模型】【信用违约建模案例】【银行客户购物篮分析】
|
|
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24