
说到建模分析师,你可能会臆想到的形象是怎样的?数据民工?金融精英?公司牛人?
他的发型可能是:
秃头
无刘海蓬松长发
他的装束大概是:
双肩背包(你的背包,背到现在还没烂)
运动鞋(竹杖芒鞋轻胜马,谁怕,一蓑烟雨任平生)
他的形象兴许是:
数据民工,励精图治。
数据精英,功成名遂。
数据前辈,德高望重。
那么走进建模分析师的工作,看看他们都在干什么吧。
如果你是SAS的忠实用户,身处银行、医药、电信等大型行业,你可能会接触到
信用卡违约预测之监测
如果你正在为万达做电影推荐系统,钟爱SPSS Moderler,你可能会构建
基于电影系统的关联推荐模型
如果你身处互联网行业,善于使用R语言,专注于CRM客户关系管理,你涉及的课题可能是:
客户管理管理与生命周期
最后,让我们来看看,企业BOSS们对建模分析师都有哪些要求呢?
以下标准取自猎聘网对建模分析师的共性要求整理所得,仅供参考:
硬性:
1. 学历背景:统招本科学历以上,数学/统计学/金融工程/计算机专业背景优先
2. 技能:熟练掌握SAS/SPSS/Python/R等至少一种工具,必须会SQL;
软性:
1. 工作经历:2~3年各行业建模分析工作经验;
2. 商业思维:具有较好的商业感觉和逻辑推理能力,善于从商业角度解读数据,有创造性思维和较强的学习能力,能推动数据分析结果落地。
那么,有没有什么捷径可以让我们更快速的成为建模分析师吗?
答案是:CDA LEVEL II建模分析师,四个专题,皆为大牛!带你快速入门建模分析师,体验不一样的数据挖掘!
【报名流程】
1. 在线填写报名信息
https://www.cda.cn/kecheng/4.html
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
SPSS Modeler专题
北京:2016年7月29-31,8月05-07日
上海:2016年10月21-23,28-30日
深圳:2016年9月16-18,23-25日
主题
以企业场景、真实案例教学方式,利用SPSS MODELER来贯穿数据挖掘建模的整个内容,包括基础、算法、建模、进阶、模型优化、应用等。
应用范围
《营销活动及信用风险控制》 《企业如何处理原始数据》 《如何根据业务选取有效变量》 《如何建立交叉销售模型》 《如何建立信用评分模型》 《如何进行模型优化》 《企业如何建立预测模型》 《客户分群精准化营销》
算法理论
KDD、CRISP DM—数据处理—统计检验—决策树、罗吉斯回归、包装法—贝氏网络—神经网络—支持向量机—随机森林—聚类分析—关联分析—序列分析
案例操作
【营销客户分群】【银行风险预测】【网站行为关联分析】【商品关联规则】【交叉销售】【客户流失预警】【天气预测】【药物治疗】【疾病诊断】【零售购物篮组合】【银行金融产品序列分析】
SAS专题
北京:2016年8月06-07,13-14,20-21日
上海:2016年8月13-14,20-21,27-28日
主题
以SAS为工具,讲解SAS软件中高级编程技术,并运用SAS进行数据挖掘流程化操作。
应用范围
《银行、证券等金融企业》《大型零售企业》《通信行业》《医疗行业》
软件技术
《SAS基础编程》《SAS数据管理》《SAS编程进阶》《SAS与SQL》《SAS宏语言》《程序优化》
算法理论
案例操作
【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】
PYTHON专题
北京:2016年9月03-04,10-11,16-17日
主题
以PYTHON为工具,讲解PYTHON软件数据挖掘编程技术,并运用PYTHON
应用范围
《互联网企业》《网站分析》《网络产品与运营》《其他》
软件技术
《PYTHON语法基础》《PYTHON数据挖掘包》《主成分与因子分析》《聚类分析》《预测分析》《文本分析》《社会网络分析》
算法理论
线性回归与岭回归--可实现的Lasso算法--Logistic回归--广义线性模型--最近邻域法(KNN)--样条曲线--决策树--随机森林--支持向量机--线性判别模型--主成分分析PCA--样本聚类--关联规则与序贯分析
案例操作
【汽车类型聚类与地域购买偏好分析】【婚恋网站被约会可能性预测】【零售业客户价值预测模型】【新闻内容分类】【构造新闻热点词指数】【电信客户交友圈与流失预警】
R语言专题
北京:8月06-07,13-14日,20-21日(6天)
广州:8月06-07,20-21日,27-28日(6天)
主题
以R为工具,讲解R语言软件数据挖掘编程技术,并运用R
应用范围
《学术界》《客户预测与客户流失》《信用违约建模》《银行金融业》
软件技术
《R常用包》《R语言编程》《预测模型》《降维》《分类模型》《样本聚类》
算法理论
朴素贝叶斯--决策树--KNN--逻辑回归--神经网络--SVM--岭回归--Lasso算法--装袋法--Adaboost算法--主成分分析PCA--K-means--谱聚类--密度聚类--关联规则--序列模式
案例操作
【制作经营业务BI常用图表】【婚恋网站是否可以成功约会预测】【客户流失预测】【零售业客户价值预测模型】【信用违约建模案例】【银行客户购物篮分析】
|
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26